精英家教网 > 高中数学 > 题目详情
17.已知极坐标平面内的点P(2,-$\frac{5π}{3}$),则P关于极点的对称点的极坐标与直角坐标分别为(  )
A.(2,$\frac{π}{3}$),(1,$\sqrt{3}$)B.(2,-$\frac{π}{3}$),(1,-$\sqrt{3}$)C.(2,$\frac{2π}{3}$),(-1,$\sqrt{3}$)D.(2,-$\frac{2π}{3}$),(-1,-$\sqrt{3}$)

分析 利用中心对称性与极坐标化为直角坐标的方法即可得出.

解答 解:点P(2,-$\frac{5π}{3}$)关于极点的对称点的极坐标为$(2,-\frac{2π}{3})$.
又x=2$cos\frac{4π}{3}$=$2×(-\frac{1}{2})$=-1,y=$2sin\frac{4π}{3}$=-$2×\frac{\sqrt{3}}{2}$=-$\sqrt{3}$,其直角坐标为$(-1,-\sqrt{3})$.
故选:D.

点评 本题考查了极坐标方程化为直角坐标方程、中心对称性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在三棱锥S-ABC中,AB⊥BC,AB=BC=$\sqrt{2}$,SA=SC=2.AC的中点为M,∠SMB的余弦值为$\frac{\sqrt{3}}{3}$,若S、A、B、C都在同一球面上,则该球的表面积为(  )
A.$\frac{3π}{2}$B.C.D.$\sqrt{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=ax-lnx在区间(2,+∞)单调递增,则a的取值范围是(  )
A.[$\frac{1}{2}$,+∞)B.(-∞,-1]C.(-∞,-2]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设命题p:函数f(x)=lg(ax2-x+$\frac{1}{16}$a)定义域为R;命题q:不等式3x-9x<a对任意x∈R恒成立.
(1)如果p是真命题,求实数a的取值范围;
(2)如果命题“p或q”为真命题且“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列点在曲线$\left\{\begin{array}{l}x={sin^2}θ\\ y=cosθ\end{array}\right.$上的是(  )
A.(2,1)B.(-3,-2)C.$({\frac{3}{4},-\frac{1}{2}})$D.(1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若非零向量f(x)满足|$\overrightarrow{a}$|=$\frac{2\sqrt{2}}{3}$|$\overrightarrow{b}$|,且$(\overrightarrow a-\overrightarrow b)⊥(3\overrightarrow a+2\overrightarrow b)$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合A={2,4},B={1,m2},则“A∩B={4}”是“m=2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.圆x2+y2+2x=0关于y轴对称的圆的一般方程是x2+y2-2x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,cosB=-$\frac{5}{13}$,cosC=$\frac{4}{5}$,tanA的值为(  )
A.$\frac{33}{16}$B.-$\frac{33}{56}$C.$\frac{33}{56}$D.$\frac{63}{16}$

查看答案和解析>>

同步练习册答案