【题目】已知椭圆
的两个焦点为
,
,椭圆上一动点
到
,
距离之和为4,当
到
轴上的射影恰为
时,
,左、右顶点分别为
,
,
为坐标原点,经过点
的直线
与椭圆
交于
,
两点.
(1)求椭圆
的方程;
(2)记
与
的面积分别为
,
,求
的最大值.
科目:高中数学 来源: 题型:
【题目】如图1,已知菱形
的对角线
交于点
,点
为线段
的中点,
,
,将三角形
沿线段
折起到
的位置,
,如图2所示.
![]()
(Ⅰ)证明:平面
平面
;
(Ⅱ)求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为生产一种精密管件研发了一台生产该精密管件的车床,该精密管件有内外两个口径,监管部门规定“口径误差”的计算方式为:管件内外两个口径实际长分别为
,标准长分别为
则“口径误差”为
只要“口径误差”不超过
就认为合格,已知这台车床分昼夜两个独立批次生产.工厂质检部在两个批次生产的产品中分别随机抽取40件作为样本,经检测其中昼批次的40个样本中有4个不合格品,夜批次的40个样本中有10个不合格品.
(Ⅰ)以上述样本的频率作为概率,在昼夜两个批次中分别抽取2件产品,求其中恰有1件不合格产品的概率;
(Ⅱ)若每批次各生产1000件,已知每件产品的成本为5元,每件合格品的利润为10元;若对产品检验,则每件产品的检验费用为2.5元;若有不合格品进入用户手中,则工厂要对用户赔偿,这时生产的每件不合格品工厂要损失25元.以上述样本的频率作为概率,以总利润的期望值为决策依据,分析是否要对每个批次的所有产品作检测?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆Γ:
的左,右焦点分别为F1(
,0),F2(
,0),椭圆的左,右顶点分别为A,B,已知椭圆Γ上一异于A,B的点P,PA,PB的斜率分别为k1,k2,满足
.
(1)求椭圆Γ的标准方程;
(2)若过椭圆Γ左顶点A作两条互相垂直的直线AM和AN,分别交椭圆Γ于M,N两点,问x轴上是否存在一定点Q,使得∠MQA=∠NQA成立,若存在,则求出该定点Q,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两个同样的红球、两个同样的黑球和两个同样的白球放入下列6个格中,要求同种颜色的球不相邻,则可能的放球方法共有______种.(用数字作答)
1 | 2 | 3 | 4 | 5 | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,圆
:
,定点
,点
是圆
上一动点,线段
的垂直平分线交圆
的半径
于点
,点
的轨迹为
.
(Ⅰ)求曲线
的方程;
(Ⅱ)不垂直于
轴且不过
点的直线
与曲线
相交于
两点,若直线
、
的斜率之和为0,则动直线
是否一定经过一定点?若过一定点,则求出该定点的坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两动圆
和
(
),把它们的公共点的轨迹记为曲线
,若曲线
与
轴的正半轴的交点为
,且曲线
上的相异两点
满足:
.
(1)求曲线
的轨迹方程;
(2)证明直线
恒经过一定点,并求此定点的坐标;
(3)求
面积
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com