【题目】已知两动圆和(),把它们的公共点的轨迹记为曲线,若曲线与轴的正半轴的交点为,且曲线上的相异两点满足:.
(1)求曲线的轨迹方程;
(2)证明直线恒经过一定点,并求此定点的坐标;
(3)求面积的最大值.
【答案】(1);(2)见解析;(3).
【解析】
(1)设两动圆的公共点为,由椭圆定义得出曲线是椭圆,并得出、、的值,即可得出曲线的方程;
(2)求出点,设点,,对直线的斜率是否存在分两种情况讨论,在斜率存在时,设直线的方程为,并将该直线方程与椭圆的方程联立,列出韦达定理,结合条件并代入韦达定理求出的值,可得出直线所过点的坐标,在直线的斜率不存在时,可得出直线的方程为,结合这两种情况得出直线所过定点坐标;
(3)利用韦达定理求出面积关于的表达式,换元,然后利用基本不等式求出的最大值.
(1)设两动圆的公共点为,则有:.
由椭圆的定义可知的轨迹为椭圆,,,所以曲线的方程是:;
(2)由题意可知:,设,,
当的斜率存在时,设直线,联立方程组:
,把②代入①有:,
③,④,
因为,所以有,
,把③④代入整理:
,(有公因式)继续化简得:
,或(舍),
当的斜率不存在时,易知满足条件的直线为:
过定点,综上,直线恒过定点;
(3)面积,
由第(2)小题的③④代入,整理得:,
因在椭圆内部,所以,可设,
,,(时取到最大值).
所以面积的最大值为.
科目:高中数学 来源: 题型:
【题目】已知点F1,F2分别为椭圆的左、右焦点,点P为椭圆上任意一点,P到焦点F2的距离的最大值为,且△PF1F2的最大面积为1.
(Ⅰ)求椭圆C的方程.
(Ⅱ)点M的坐标为,过点F2且斜率为k的直线L与椭圆C相交于A,B两点.对于任意的是否为定值?若是求出这个定值;若不是说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右顶点分别为,,左、右焦点分别为,,离心率为,点,为线段的中点.
()求椭圆的方程.
()若过点且斜率不为的直线与椭圆交于、两点,已知直线与相交于点,试判断点是否在定直线上?若是,请求出定直线的方程;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为正方体ABCD-A1B1C1D1,动点M从B1点出发,在正方体表面沿逆时针方向运动一周后,再回到B1的运动过程中,点M与平面A1DC1的距离保持不变,运动的路程x与l=MA1+MC1+MD之间满足函数关系l=f(x),则此函数图象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业参加项目生产的工人为人,平均每人每年创造利润万元.根据现实的需要,从项目中调出人参与项目的售后服务工作,每人每年可以创造利润万元(),项目余下的工人每人每年创造利图需要提高
(1)若要保证项目余下的工人创造的年总利润不低于原来名工人创造的年总利润,则最多调出多少人参加项目从事售后服务工作?
(2)在(1)的条件下,当从项目调出的人数不能超过总人数的时,才能使得项目中留岗工人创造的年总利润始终不低于调出的工人所创造的年总利润,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的方程为,其中常数,是抛物线的焦点.
(1)若直线被抛物线所截得的弦长为6,求的值;
(2)设是点关于顶点的对称点,是抛物线上的动点,求的最大值;
(3)设,、是两条互相垂直,且均经过点的直线,与抛物线交于点、,与抛物线交于点、,若点满足,求点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前6项依次成等比数列,设公比为q(),数列从第5项开始各项依次为等差数列,其中,数列的前n项和为.
(1)求公比q及数列的通项公式;
(2)若,求项数n的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com