精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若函数的最小值是,且c1,求F(2)F(2)的值;

(2)a1c0,且在区间(01]上恒成立,试求b的取值范围.

【答案】(1)8;(2)[2,0]

【解析】

1)由函数fx)的最小值是f(﹣1)=0,且c1,解得ab的值,得到fx)解析式代入到Fx)中,计算出F2+F(﹣2)的值;

2)由a1c0,则fx)=x2+bx,把问题﹣1fx)≤1在区间(01]上恒成立转化为﹣xbx在区间(01]上恒成立,研究﹣xx在(01]的单调性求出最值,从而得到b的取值范围.

(1)由已知c1abc0,且-=-1,解得a1b2,∴f(x)(x1)2.

,∴F(2)F(2)(21)2[(21)2]8.

(2)f(x)x2bx,原命题等价于-1≤x2bx≤1(0,1]上恒成立,

bxbx(0,1]上恒成立.

y=x单调递增,故最小值为0y=-x=-(+x当且仅当 取等.

∴-2≤b≤0.b的取值范围是[2,0].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司需要对所生产的三种产品进行检测,三种产品数量(单位:件)如下表所示:

产品

A

B

C

数量(件)

180

270

90

采用分层抽样的方法从以上产品中共抽取6.

1)求分别抽取三种产品的件数;

2)将抽取的6件产品按种类编号,分别记为现从这6件产品中随机抽取2.

(ⅰ)用所给编号列出所有可能的结果;

(ⅱ)求这两件产品来自不同种类的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.

(1)当时,求曲线上的点到直线的距离的最大值;

(2)若曲线上的所有点都在直线的下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P到定点的距离比它到直线的距离小2,设动点P的轨迹为曲线C

求曲线C的方程;

若直线与曲线C和圆从左至右的交点依次为ABCD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆 的焦距与椭圆 的短轴长相等,且的长轴长相等,这两个椭圆在第一象限的交点为,直线经过轴正半轴上的顶点且与直线为坐标原点)垂直, 的另一个交点为 交于 两点.

(1)求的标准方程;

(2)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的个数是(  )

①命题“任意”的否定是“任意

②命题“若,则”的逆否命题是真命题;

③若命题为真,命题为真,则命题为真;

④命题“若,则”的否命题是“若,则.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.

(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;

(2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;

(3)若从甲、乙两车间12个零件中随机抽取2个零件,用表示乙车间的零件个数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系 km为常数).若该食品在0的保鲜时间是64小时,在18的保鲜时间是16小时,则该食品在36的保鲜时间是(

A.4小时B.8小时C.16小时D.32小时

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,抛物线的焦点均在轴上, 的中心和的顶点均为原点,从 上分别取两个点,将其坐标记录于下表中:

3

-2

4

0

-4

(1)求的标准方程;

(2)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求实数的取值范围.

查看答案和解析>>

同步练习册答案