【题目】质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.
(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;
(2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;
(3)若从甲、乙两车间12个零件中随机抽取2个零件,用表示乙车间的零件个数,求的分布列与数学期望.
【答案】(1)(2)(3)分布列见解析
【解析】试题分析:
(1)本题求独立事件同时发生的概率,解题时运用对立事件的概率求解比较简单.(2)运用条件概率求解,解题时要分清谁是条件.(3)由题意可得到的所有可能取值,然后分别求出概率,列成表格的形式可得分布列,根据定义求得期望值.
试题解析:
(1)由题意得甲车间的合格零件数为4,乙车间的合格的零件数为2,
故所求概率为.
即甲车间至少一个零件合格且乙车间至少一个零件合格的概率为.
(2)设事件表示“2件合格,2件不合格”;事件表示“3件合格,1件不合格”;事件表示“4件全合格”; 事件表示“检测通过”;事件表示“检测良好”.
则,
∴.
故甲车间在这次检测通过的条件下,获得检测良好的概率为.
(3)由题意可得的所有可能取值为0,1,2.
,
,
.
∴ 随机变量的分布列为
∴.
科目:高中数学 来源: 题型:
【题目】已知点为抛物线的焦点,点为点关于原点的对称点,点在抛物线上,则下列说法错误的是( )
A. 使得为等腰三角形的点有且仅有4个
B. 使得为直角三角形的点有且仅有4个
C. 使得的点有且仅有4个
D. 使得的点有且仅有4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线 的焦点为,过抛物线上的动点(除顶点外)作的切线交轴于点.过点作直线的垂线(垂足为)与直线交于点.
(Ⅰ)求焦点的坐标;
(Ⅱ)求证:;
(Ⅲ)求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.曲线的极坐标方程为,曲线的参数方程为(为参数)
(1)求曲线的直角坐标方程及曲线的极坐标方程;
(2)当()时在曲线上对应的点为,若的面积为,求点的极坐标,并判断是否在曲线上(其中点为半圆的圆心)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:
甲公司送餐员送餐单数频数表
送餐单数 | 38 | 39 | 40 | 41 | 42 |
天数 | 10 | 15 | 10 | 10 | 5 |
乙公司送餐员送餐单数频数表
送餐单数 | 38 | 39 | 40 | 41 | 42 |
天数 | 5 | 10 | 10 | 20 | 5 |
(1)现从甲公司记录的50天中随机抽取3天,求这3天送餐单数都不小于40的概率;
(2)若将频率视为概率,回答下列两个问题:
①记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;
②小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的首项为,公差为,等比数列的首项为,公比为.
(Ⅰ)若数列的前项和,求, 的值;
(Ⅱ)若, ,且.
(i)求的值;
(ii)对于数列和,满足关系式, 为常数,且,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的导函数f′(x),且对任意x>0,都有f′(x)>.
(1)判断函数F(x)=在(0,+∞)上的单调性;
(2)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(3)请将(2)中结论推广到一般形式,并证明你所推广的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·郑州第二次质量预测)如图,高为1的等腰梯形ABCD中,AM=CD=AB=1.现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接AB,AC.
(1)在AB边上是否存在点P,使AD∥平面MPC?
(2)当点P为AB边的中点时,求点B到平面MPC的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com