【题目】已知等差数列满足,数列的前项和为,且满足.
(1)求数列和的通项公式;
(2)数列满足,求数列的前项和.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知点,以原点为极点, 轴的正半轴为极轴建立坐标系,曲线的极坐标方程为,过点作极坐标方程为的直线的平行线,分别交曲线于两点.
(1)写出曲线和直线的直角坐标方程;
(2)若成等比数列,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学调查了某班全部名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
(1)能否由的把握认为参加书法社团和参加演讲社团有关?
(附:
当时,有的把握说事件与有关;当,认为事件与是无关的)
(2)已知既参加书法社团又参加演讲社团的名同学中,有名男同学, , , , , 名女同学, , .现从这名男同学和名女同学中各随机选人,求被选中且未被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.
(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;
(2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;
(3)若从甲、乙两车间12个零件中随机抽取2个零件,用表示乙车间的零件个数,求的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量分布在内,且销售量的分布频率
.
(Ⅰ)求的值.
(Ⅱ)若销售量大于等于80,则称该日畅销,其余为滞销,根据是否畅销从这50天中用分层抽样的方法随机抽取5天,再从这5天中随机抽取2天,求这2天中恰有1天是畅销日的概率(将频率视为概率).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·石家庄一模)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )
A. ①② B. ①③
C. ②④ D. ①④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com