精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列满足,数列的前项和为,且满足.

(1)求数列的通项公式;

(2)数列满足,求数列的前项和.

【答案】(1);(2.

【解析】试题分析:(1)设等差数列{an}的公差为d,利用等差中项的性质及已知条件“a1+a2+a3=9、a2+a8=18”可得公差,进而可得数列{an}的通项;利用“bn+1=Sn+1﹣Sn”及“b1=2b1﹣2”,可得公比和首项,进而可得数列{bn}的通项;

(2)利用,利用错位相减法及等比数列的求和公式即得结论.

试题解析:

解:(1)设等差数列的公差为

,即

,即

,即

.

两式相减,得.

.

数列是首项和公比均为的等比数列, .

数列的通项公式分别为.

2)由(1)知

两式相减,得

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆与直线都经过点.直线平行,且与椭圆交于两点,直线轴分别交于两点.

(1)求椭圆的方程;

(2)证明: 为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为梯形,平面平面

为侧棱的中点,且.

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中

(1)若,讨论函数的单调性;

(2)若,求证:函数有唯一的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知点以原点为极点, 轴的正半轴为极轴建立坐标系,曲线的极坐标方程为过点作极坐标方程为的直线的平行线分别交曲线两点.

1)写出曲线和直线的直角坐标方程;

(2)若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查了某班全部名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)

(1)能否由的把握认为参加书法社团和参加演讲社团有关?

(附:

时,有的把握说事件有关;当,认为事件是无关的)

(2)已知既参加书法社团又参加演讲社团的名同学中,有名男同学 名女同学 .现从这名男同学和名女同学中各随机选人,求被选中且未被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.

(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率;

(2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;

(3)若从甲、乙两车间12个零件中随机抽取2个零件,用表示乙车间的零件个数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了准确把握市场,做好产品计划,特对某产品做了市场调查:先销售该产品50天,统计发现每天的销售量分布在且销售量的分布频率

.

(Ⅰ)求的值.

(Ⅱ)若销售量大于等于80,则称该日畅销,其余为滞销,根据是否畅销从这50天中用分层抽样的方法随机抽取5天,再从这5天中随机抽取2天,求这2天中恰有1天是畅销日的概率(将频率视为概率).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·石家庄一模)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为(  )

A. ①② B. ①③

C. ②④ D. ①④

查看答案和解析>>

同步练习册答案