精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知点以原点为极点, 轴的正半轴为极轴建立坐标系,曲线的极坐标方程为过点作极坐标方程为的直线的平行线分别交曲线两点.

1)写出曲线和直线的直角坐标方程;

(2)若成等比数列,求的值.

【答案】

【解析】试题分析:(1)利用方程的互化方法求出曲线和直线的直角坐标方程;(2)写出直线的参数方程,代入到曲线的方程,结合韦达定理及成等比数列,即可求出的值.

试题解析:(1)由,得

得曲线E的直角坐标方程为

又直线的斜率为且过点

故直线的直角坐标方程为

2在直角坐标系直线的参数方程为 (为参数)

代入

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点在椭圆上,且椭圆的离心率为.

(1)求椭圆的方程;

(2)若为椭圆的右顶点,点是椭圆上不同的两点(均异于)且满足直线斜率之积为.试判断直线是否过定点,若是,求出定点坐标,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2018届高三·湖南十校联考)已知函数f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,则当y≥1时, 的取值范围是(  )

A. B.

C. [1,3-3] D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,过抛物线上的动点除顶点外)作的切线轴于点.过点作直线的垂线垂足为)与直线交于点.

(Ⅰ)求焦点的坐标;

(Ⅱ)求证:

(Ⅲ)求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥 中, .

(1)证明:顶点在底面的射影在的平分线上;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列满足,数列的前项和为,且满足.

(1)求数列的通项公式;

(2)数列满足,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.曲线的极坐标方程为,曲线的参数方程为为参数)

(1)求曲线的直角坐标方程及曲线的极坐标方程;

(2)当)时在曲线上对应的点为,若的面积为,求点的极坐标,并判断是否在曲线上(其中点为半圆的圆心)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的首项为,公差为等比数列的首项为,公比为.

若数列的前项和,求 的值

,且.

i的值;

ii对于数列满足关系式 为常数,且,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是由个实数组成的列的数表,满足:每个数的绝对值不大于,且所有数的和为零,记为所有这样的数表组成的集合,对于,记的第行各数之和( ),的第列各数之和(),记 中的最小值.

)对如下数表,求的值.

)设数表形如:

的最大值.

)给定正整数,对于所有的,求的最大值.

查看答案和解析>>

同步练习册答案