【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知点,以原点为极点, 轴的正半轴为极轴建立坐标系,曲线的极坐标方程为,过点作极坐标方程为的直线的平行线,分别交曲线于两点.
(1)写出曲线和直线的直角坐标方程;
(2)若成等比数列,求的值.
科目:高中数学 来源: 题型:
【题目】已知点在椭圆上,且椭圆的离心率为.
(1)求椭圆的方程;
(2)若为椭圆的右顶点,点是椭圆上不同的两点(均异于)且满足直线与斜率之积为.试判断直线是否过定点,若是,求出定点坐标,若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2018届高三·湖南十校联考)已知函数f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,则当y≥1时, 的取值范围是( )
A. B.
C. [1,3-3] D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线 的焦点为,过抛物线上的动点(除顶点外)作的切线交轴于点.过点作直线的垂线(垂足为)与直线交于点.
(Ⅰ)求焦点的坐标;
(Ⅱ)求证:;
(Ⅲ)求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.曲线的极坐标方程为,曲线的参数方程为(为参数)
(1)求曲线的直角坐标方程及曲线的极坐标方程;
(2)当()时在曲线上对应的点为,若的面积为,求点的极坐标,并判断是否在曲线上(其中点为半圆的圆心)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的首项为,公差为,等比数列的首项为,公比为.
(Ⅰ)若数列的前项和,求, 的值;
(Ⅱ)若, ,且.
(i)求的值;
(ii)对于数列和,满足关系式, 为常数,且,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是由个实数组成的行列的数表,满足:每个数的绝对值不大于,且所有数的和为零,记为所有这样的数表组成的集合,对于,记为的第行各数之和(剟 ),为的第列各数之和(剟),记为, , , , , , , 中的最小值.
()对如下数表,求的值.
()设数表形如:
求的最大值.
()给定正整数,对于所有的,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com