精英家教网 > 高中数学 > 题目详情
7.我们知道:正三角形的中心到三个顶点距离都相等,设为d;到三条边距离也相等,设为r,则$\frac{d}{r}$=2;类比到空间:正四面体也有中心,到四个顶点距离都相等且为d;到四个面距离也相等且为r,则$\frac{d}{r}$=(  )
A.1B.2C.3D.4

分析 类比平面几何结论,推广到空间,则有结论:“$\frac{d}{r}$=3”.设正四面体ABCD边长为1,易求得AM=$\frac{\sqrt{6}}{3}$,又O到四面体各面的距离都相等,所以O为四面体的内切球的球心,设内切球半径为r,则有r=$\frac{3V}{{S}_{表}}$,可求得r即OM,从而可验证结果的正确性.

解答 解:推广到空间,则有结论:“$\frac{d}{r}$=3”.
设正四面体ABCD边长为1,易求得AM=$\frac{\sqrt{6}}{3}$,
又O到四面体各面的距离都相等,
所以O为四面体的内切球的球心,设内切球半径为r,
则有r=$\frac{3V}{{S}_{表}}$,可求得r即OM=$\frac{\sqrt{6}}{12}$,
所以AO=AM-OM=$\frac{\sqrt{6}}{4}$,所以$\frac{AO}{OM}$=$\frac{d}{r}$=3
故选:C.

点评 本题考查类比推理、几何体的结构特征、体积法等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,已知,AB=2,AC=3,BC=4,D是BC边上的一点,∠BAD=45°,求tan∠DAC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.(实验班做)四面体的顶点和各棱的中点共10个点,在其中取4个点,则这四个点不共面的概率为(  )
A.$\frac{5}{7}$B.$\frac{7}{10}$C.$\frac{47}{70}$D.$\frac{24}{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知向量$\overrightarrow a$,$\overrightarrow b$满足$|{\overrightarrow a}|$=$|{\overrightarrow b}|$=3,且$\overrightarrow a$与$\overrightarrow b$的夹角为120°,求$|{\overrightarrow a+\overrightarrow b}|$,$|{2\overrightarrow a-\overrightarrow b}|$;
(2)已知非零向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a+3\overrightarrow b$与$7\overrightarrow a-5\overrightarrow b$互相垂直,$\overrightarrow a-4\overrightarrow b$与$\overrightarrow{7a}-2\overrightarrow b$互相垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在等差数列{an}中,a2+a3=5,a1=4,则公差d等于(  )
A.-1B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在半径为1的球面上有不共面的四个点A,B,C,D且AB=CD=x,BC=DA=y,CA=BD=z,则x2+y2+z2等于(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x(lnx-ax)(a∈R),g(x)=f′(x).
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线3x-y-1=0平行,求实数a的值;
(2)若函数F(x)=g(x)+$\frac{1}{2}$x2有两个极值点x1,x2,且x1<x2,求证:f(x2)-1<f(x1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.对于非零实数a,b,c,以下四个命题都成立:
①(a+b)2=a2+2a•b+b2;  
②若a•b=a•c,则b=c;
③(a+b)•c=a•c+b•c;      
④(a•b)•c=a•(b•c);
那么类比于此,对于非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,相应命题仍然成立的所有序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在(0,+∞)上的函数f(x)满足f(x)>0,且2f(x)<xf′(x)<3f(x)对x∈(0,+∞)恒成立,其中f′(x)为f(x)的导函数,则(  )
A.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$B.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$C.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{3}$D.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$

查看答案和解析>>

同步练习册答案