精英家教网 > 高中数学 > 题目详情
17.如图,在△ABC中,已知,AB=2,AC=3,BC=4,D是BC边上的一点,∠BAD=45°,求tan∠DAC.

分析 在△ABC中由余弦定理求出cos∠BAC,由内角的范围和平方关系求出sin∠BAC,根据“∠DAC=∠BAC-∠BAD”和两角差的余弦公式求出cos∠DAC,由平方关系求出sin∠DAC,由商的关系表示出tan∠DAC,利用完全平方和公式和分母有理化进行化简即可.

解答 解:在△ABC中,AB=2,AC=3,BC=4,
则由余弦定理得,cos∠BAC=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2•AB•AC}$=$\frac{4+9-16}{2×2×3}$=$-\frac{1}{4}$,
∵0<∠BAC<180°,
∴sin∠BAC=$\sqrt{1-co{s}^{2}∠BAC}$=$\frac{\sqrt{15}}{4}$,
由∠BAD=45°得,cos∠DAC=cos(∠BAC-∠BAD)
=cos(∠BAC-45°)=cos∠BACcos45°+sin∠BACsin45°
=$\frac{\sqrt{2}}{2}$(cos∠BAC+sin∠BAC)=$\frac{\sqrt{2}}{2}$($-\frac{1}{4}$+$\frac{\sqrt{15}}{4}$)=$\frac{\sqrt{2}(\sqrt{15}-1)}{8}$,
∴sin∠DAC=$\sqrt{1-co{s}^{2}∠DAC}$=$\frac{\sqrt{8+\sqrt{15}}}{4}$
∴tan∠DAC=$\frac{sin∠DAC}{cos∠DAC}$=$\frac{\sqrt{8+\sqrt{15}}}{4}×\frac{8}{\sqrt{2}(\sqrt{15}-1)}$=$\frac{\sqrt{2}•\sqrt{8+\sqrt{15}}}{\sqrt{15}-1}$
=$\frac{\sqrt{2}•\sqrt{8+\sqrt{15}}•(\sqrt{15}+1)}{14}$=$\frac{\sqrt{2}•\sqrt{(8+\sqrt{15})•(\sqrt{15}+1)^{2}}}{14}$
=$\frac{\sqrt{2}•\sqrt{158+32\sqrt{15}}}{14}$=$\frac{\sqrt{79+16\sqrt{15}}}{7}$
=$\frac{\sqrt{64+2×8×\sqrt{15}+(\sqrt{15})^{2}}}{7}$=$\frac{8+\sqrt{15}}{7}$.

点评 本题考查余弦定理,同角三角函数的基本关系,以及两角差的余弦公式,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.经过点(-4,3),且与原点的距离等于3的直线方程是24x+7y+75=0或y=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.
(1)求角C;
(2)求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等比数列{an}的前n项和Sn=a•2n+a-2,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=\left\{\begin{array}{l}{e^x}-1\\ lnx\end{array}\right.$$\begin{array}{l}(x<1)\\(x≥1)\end{array}$,那么f(ln2)的值是(  )
A.0B.1C.ln(ln2)D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知直线l1:ax+y-1=0,l2:2x+(a-1)y+2=0,若l1∥l2,则a=2,l1与l2的距离为$\frac{{3\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,斜三棱柱ABC-A1B1C1,面AA1B1B⊥面ABC,且∠A1AB=60°,AA1=2,△ABC为边长为2的等边三角形,G为△ABC的重心,取BC中点F,连接B1F与BC1交于E点:
(1)求证:GE∥面AA1B1B;  
(2)求三棱锥B-B1EA的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果曲线y=x4-x在点P处的切线垂直于直线y=-$\frac{1}{3}$x,那么点P的坐标为(  )
A.(1,0)B.(0,-1)C.(0,1)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.我们知道:正三角形的中心到三个顶点距离都相等,设为d;到三条边距离也相等,设为r,则$\frac{d}{r}$=2;类比到空间:正四面体也有中心,到四个顶点距离都相等且为d;到四个面距离也相等且为r,则$\frac{d}{r}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案