精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在坐标原点,对称轴为坐标轴,焦点在轴上,有一个顶点为
(1)求椭圆的方程;
(2)过点作直线与椭圆交于两点,线段的中点为,求直线的斜率的取值范围.
(1);(2).

试题分析:(1)首先根据椭圆有一个顶点为,可知长轴,又,从而得:,可求出,即可求出椭圆方程.
(2)分直线的斜率存在与不存在分类讨论,(1)当直线轴垂直时,点的坐标为,此时,;(2)当直线的斜率存在且不为零时,设直线方程为,将直线方程与椭圆方程联立,消去,并整理得,利用和点差法即可求出结果.
解:(1)因为椭圆有一个顶点为,故长轴,又,从而得:∴椭圆的方程;(3分)
(2)依题意,直线过点且斜率不为零.
(1)当直线轴垂直时,点的坐标为,此时,;   (4分)
(2)当直线的斜率存在且不为零时,设直线方程为,  (5分)
由方程组
 消去,并整理得,  
,, 又有,则
   (7分)
 ,  ∴
,       (9分)
 ,       .
 .          (11分)
综合(1)、(2)可知直线的斜率的取值范围是:.   (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆和椭圆的离心率相同,且点在椭圆上.
(1)求椭圆的方程;
(2)设为椭圆上一点,过点作直线交椭圆两点,且恰为弦的中点。求证:无论点怎样变化,的面积为常数,并求出此常数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点分别为,离心率.
(1)求椭圆的方程;
(2)设直线)与椭圆交于两点,线段 的垂直平分线交轴于点,当变化时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,短轴的端点分别为,且.
(1)求椭圆的方程;
(2)过点且斜率为的直线交椭圆于两点,弦的垂直平分线与轴相交于点.设弦的中点为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,点在椭圆上.

(1)求椭圆的方程;
(2)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,问:△的周长是否为定值?如果是,求出定值;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线l与椭圆+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且椭圆的离心离e=,又椭圆经过点(,1),O为坐标原点.
(1)求椭圆的方程.
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线与椭圆相交于A、B两点.
(1)若椭圆的离心率为,焦距为2,求线段AB的长;
(2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若存在过点的直线与曲线都相切,则等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是 (     )
A.B.
C.D.

查看答案和解析>>

同步练习册答案