精英家教网 > 高中数学 > 题目详情
已知直线与椭圆相交于A、B两点.
(1)若椭圆的离心率为,焦距为2,求线段AB的长;
(2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.
(1)     (2)
(1)(6分),2c=2,即
∴椭圆的方程为
将y ="-" x+1代入消去y得:


(2)(7分)设
,即

消去y得:

整理得:


,得:

整理得:

代入上式得:


条件适合
由此得:
故长轴长的最大值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心为原点O,长轴在x轴上,离心率,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.
(1)求该椭圆的标准方程;
(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP'Q的面积S的最大值,并写出对应的圆Q的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=
1
2
x
的焦点到准线的距离为(  )
A.
1
8
B.
1
4
C.
1
2
D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知直线l与抛物线相切于点P(2,1),且与轴交于点A,定点B的坐标为(2,0) .

(1)若动点M满足,求点M的轨迹C;
(2)若过点B的直线l(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设双曲线的两个焦点为,一个顶点式,则的方程为          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点为,点为该抛物线上的动点,又点
的取值范围是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的方程为右焦点为,方程的两实根分别为,则(   )
A.必在圆
B.必在圆
C.必在圆
D.必在圆与圆形成的圆环之间

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,对称轴为坐标轴,焦点在轴上,有一个顶点为
(1)求椭圆的方程;
(2)过点作直线与椭圆交于两点,线段的中点为,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点作斜率为的直线与椭圆相交于,若是线段的中点,则椭圆的离心率为     

查看答案和解析>>

同步练习册答案