精英家教网 > 高中数学 > 题目详情
设双曲线的两个焦点为,一个顶点式,则的方程为          .
由题意知:,所以,又因为双曲线的焦点在轴上,所以C的方程为.的关系式,考查分析问题与解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.
(1)求曲线C的方程;
(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.
(ⅰ)证明:k·kON为定值;
(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分14分)如图在平面直角坐标系中,分别是椭圆的左右焦点,顶点的坐标是,连接并延长交椭圆于点,过点轴的垂线交椭圆于另一点,连接.

(1)若点的坐标为,且,求椭圆的方程;
(2)若,求椭圆离心率的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆和椭圆的离心率相同,且点在椭圆上.
(1)求椭圆的方程;
(2)设为椭圆上一点,过点作直线交椭圆两点,且恰为弦的中点。求证:无论点怎样变化,的面积为常数,并求出此常数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=ax的焦点到准线的距离为4,则此抛物线的焦点坐标为(  )
A.(-2,0)或(2,0)B.(2,0)C.(-2,0)D.(4,0)或(-4,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知的三个顶点在抛物线上,为抛物线的焦点,点的中点,
(1)若,求点的坐标;
(2)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线与椭圆相交于A、B两点.
(1)若椭圆的离心率为,焦距为2,求线段AB的长;
(2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆的方程为,定直线的方程为.动圆与圆外切,且与直线相切.
(1)求动圆圆心的轨迹的方程;
(2)直线与轨迹相切于第一象限的点, 过点作直线的垂线恰好经过点,并交轨迹于异于点的点,求直线的方程及的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为双曲线的左右焦点,点上,,则(         )
A.B.C.D.

查看答案和解析>>

同步练习册答案