精英家教网 > 高中数学 > 题目详情
10.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,已知c•sinA=$\sqrt{3}$a•cosC.
(1)求∠C;
(2)若c=$\sqrt{7}$,∠A≠$\frac{π}{2}$,且sinC+sin(B-A)=3sin2A,求△ABC的面积.

分析 (1)通过正弦定理化简表达式,利用同角三角函数关系式和特殊角的三角函数值即可求出C的大小.
(2)通过三角形的内角和,以及两角和的正弦函数,以及sinC+sin(B-A)=3sin2A,推出b=3a,结合余弦定理求出a,b的值,然后求解三角形的面积.

解答 解:(Ⅰ)∵c•sinA=$\sqrt{3}$a•cosC,
由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sin}=2R$,得sinCsinA=$\sqrt{3}$sinacosC,由sinA≠0,
即sinC=$\sqrt{3}$cosC,
解得:tanC=$\sqrt{3}$,
结合0<C<π,得C=$\frac{π}{3}$.    …(6分)
(Ⅱ)由 C=π-(A+B),得sinC=sin(B+A)=sinBcosA+cosBsinA,
∵sinC+sin(B-A)=3sin2A,
∴sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA,
整理得sinBcosA=3sinAcosA.  …(8分)
若cosA=0,即A=$\frac{π}{2}$时不满足条件,舍去.
若cosA≠0,则sinB=3sinA,由正弦定理得b=3a.①
又由已知及余弦定理可得:7=a2+b2-ab,②
联立①②,结合c=2,解得a=1,b=3,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×1×3×\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$.…(12分)

点评 本题考查正弦定理与余弦定理的应用,考查分析问题解决问题的能力,考查了计算能力,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{a}{x}$+lnx.
(1)若f(x)的一条切线是y=-x+3,求f(x)的单调区间;
(2)设函数g(x)=f(x)-1在x∈[e-1,e]上有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和为Sn,已知S1=1,S2=2,当n≥2时,Sn+1-Sn-1=2n
(1)求证:an+2-an=2n(n∈N*);
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若tanα=-$\frac{1}{2}$,则$\frac{sin2α+2cos2α}{4cos2α-4sin2α}$的值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正项数列{an}满足a1=1,an+1=$\frac{5+2{a}_{n}}{16-8{a}_{n}}$,试求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于二元函数有如下定义:对于平面点集D,若按照某种对应法则f使得D中的每一点P(x,y)都有唯一的实数z与之对应,则称f为在D上的二元函数.D称为二元函数的定义域,全体函数值构成的集合称为二元函数的值域,使得f(x,y)=0成立的实数对(x,y)称为二元函数的“上升点”,若二元函数f(x,y)=3+sin[π+(2x+$\frac{1}{2}$)]-$\frac{2{x}^{2}+16xy+32{y}^{2}+2}{x+4y}$,(x,y)∈D1存在“上升点”,则二元函数h(x,y)=(x+4)2+(y+3)2,(x,y)∈D1的最小值为(  )
A.$\sqrt{13}$B.17C.$\frac{53}{4}$D.$\frac{\sqrt{53}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.同一事物若从不同角度看可能个会有不同的认识,在研究“超越方程”3x=2cos2$\frac{x}{2}$的解的个数时,有如下解题思路:方程3x=2cos2$\frac{x}{2}$可化为3x-2cos2$\frac{x}{2}$=0,构造函数f(x)=3x-2cos2$\frac{x}{2}$,故f(x)=3x-1-cosx;因为f′(x)=3+sinx>0,可知f(x)在R上单调递增,又f(0)•f($\frac{π}{2}$)<0,所以函数f(x)=3x-2cos2$\frac{x}{2}$有唯一零点,即“超越方程”3x-2cos2$\frac{x}{2}$=0有唯一解:由此可见利用函数观点解决问题的优越性,类比上述解题思路,不等式x2+2x-3>sin(x2+x)+sin(x-3)的解集为R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=excos2x,求f′(x),并写出在点(0,1)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简:
(1)$\sqrt{9-4\sqrt{5}}$;
(2)$\sqrt{{x}^{2}+\frac{1}{{x}^{2}}-2}$(0<x<1)

查看答案和解析>>

同步练习册答案