精英家教网 > 高中数学 > 题目详情
已知函数f(x)=m|x-1|(m?R且m¹0)设向量
a
=(1,cos2θ),
b
=(2,1),
c
=(4sinθ,1),
d
=(
1
2
sinθ
,1),当θ∈(0,
π
4
)时,比较f(
a
b
)与f(
c
d
)的大小.
分析:先表示出
a
b
c
d
,求出f(
a
b
)、f(
c
d
),根据θ∈(0,
π
4
)对m进行讨论,确定f(
a
b
)与f(
c
d
)的大小.
解答:解:
a
b
=2+cos2θ,
c
d
=2sin2θ+1=2-cos2θ
f(
a
b
)=m|1+cos2θ|=2mcos2θ,f(
c
d
)=m|1-cos2θ|=2msin2θ
于是有f(
a
b
)-f(
c
d
)=2m(cos2θ-sin2θ)=2mcos2θ
∵θ∈(0,
π
4
)∴2θ∈(0,
π
2
)∴cos2θ>0
∴当m>0时,2mcos2θ>0,即f(
a
b
)>f(
c
d

当m<0时,2mcos2q<0,即f(
a
b
)<f(
c
d
点评:本题考查比较大小,平面向量数量积的运算,考查分类讨论思想,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m•2x+t的图象经过点A(1,1)、B(2,3)及C(n,Sn),Sn为数列{an}的前n项和,n∈N*
(1)求Sn及an
(2)若数列{cn}满足cn=6nan-n,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m(x+
1
x
)的图象与h(x)=(x+
1
x
)+2的图象关于点A(0,1)对称.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于
π
2

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=
3
,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下两题任选一题:(若两题都作,按第一题评分)
(一):在极坐标系中,圆ρ=2cosθ的圆心到直线θ=
π
3
(ρ∈R)的距离
3
2
3
2

(二):已知函数f(x)=m-|x-2|,m∈R,当不等式f(x+2)≥0的解集为[-2,2]时,实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步练习册答案