精英家教网 > 高中数学 > 题目详情
3.把正整数按图所示的规律排序,则从2011到2013的箭头方向依次为(  ) 
A.B.C.D.

分析 根据如图所示的排序可以知道每四个数一组循环,把2011除以4余数为3,由此可以确定2011的位置和3的位置相同,从而可得结论从而可得结论.

解答 解:由图形的变化趋势可知,箭头的变化方向以4为周期,
2 011÷4=502×4+3,2 012÷4=502×4+4,2 013=502×4+5,
故2 011→2 013的箭头方向同3→5的箭头方向.
故选:B.

点评 本题考查合情推理,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在平行四边形ABCD中,∠A=$\frac{π}{3}$,边AB,AD的长分别为2,1,若M,N分别是边BC,CD上的点,且满足$\frac{|\overrightarrow{BM}|}{|\overrightarrow{BC}|}$=$\frac{|\overrightarrow{CN}|}{|\overrightarrow{CD}|}$,则$\overrightarrow{AM}$•$\overrightarrow{AN}$的取值范围是(  )
A.[1,4]B.[2,5]C.[2,4]D.[1,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.以A(4,3,1),B(7,1,2),C(5,2,3)三点为顶点的三角形的形状是(  )
A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某环线地铁按内、外环线同时运行,内、外环线的长均为30km(忽略内、外环线长度差异).
(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10min,求内环线列车的最小平均速度;
(2)新调整的方案要求内环线列车平均速度为25km/h,外环线列车平均速度为30km/h.现内、外环线共有18列列车全部投入运行,问:要使内、外环线乘客的最长候车时间之差最短,则内、外环线应各投入几列列车运行?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖健康、妇幼保健、托幼等公共服务水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了200位30到40岁的公务员,得到情况如表:
男公务员女公务员
生二胎8040
不生二胎4040
(1)是否有99%以上的把握认为“生二胎与性别有关”,并说明理由;
(2)把以上频率当概率,若从社会上随机抽取甲、乙、丙3位30到40岁的男公务员,求这三人中至少有一人要生二胎的概率.
P(k2≥k00.0500.0100.001
k03.8416.63510.828
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.永泰某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x(x≥10)万元之间满足:y=f(x)=ax2+$\frac{101}{50}$x-bln$\frac{x}{10}$,a,b为常数.当x=10万元时,y=19.2万元;当x=30万元时,y=50.5万元.(参考数据:ln2=0.7,ln3=1.1,ln5=1.6).
(1)求f(x)的解析式;
(2)求该景点改造升级后旅游利润T(x)的最大值.(利润=旅游增加值-投入).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,若$\overrightarrow{AB}$=3$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{a}$+m$\overrightarrow{b}$,$\overrightarrow{CD}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,且A,C,D三点共线,则m=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.化简:$\frac{{{a^2}+2ab+{b^2}}}{{{a^2}-{b^2}}}$-$\frac{b}{a-b}$的结果是(  )
A.$\frac{a}{a-b}$B.$\frac{b}{a-b}$C.$\frac{a}{a+b}$D.$\frac{b}{a+b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.用反证法证明“$\sqrt{3},\sqrt{5},\sqrt{7}$不可能成等差数列”时,第一步应假设:$\sqrt{3},\sqrt{5},\sqrt{7}$成等差数列.

查看答案和解析>>

同步练习册答案