精英家教网 > 高中数学 > 题目详情
15.已知全集U={x|1≤x≤5}.A={x|1≤x<a},若∁UA={x|2≤x≤5},a=2.

分析 根据集合的交、并、补集的混合运算即可求出答案.

解答 解:全集U={x|1≤x≤5}.A={x|1≤x<a},∁UA={x|2≤x≤5},
∴A═∁U(∁UA)={x|1≤x<a},
∴a=2,
故答案为:2

点评 本题考查集合的交、并、补集的混合运算,是基础题,解题时要注意不等式性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若直线l的一般式方程为xsinθ-$\sqrt{3}$y+1=0(θ∈R),则直线l的倾斜角的取值范围是$[0,\frac{π}{6}]∪[\frac{5π}{6},π)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在n行n列矩阵$|\begin{array}{l}{1}&{2}&{3}&{…}&{n-2}&{n-1}&{n}\\{2}&{3}&{4}&{…}&{n-1}&{n}&{1}\\{3}&{4}&{5}&{…}&{n}&{1}&{2}\\{…}&{…}&{…}&{…}&{…}&{…}&{…}\\{n}&{1}&{2}&{…}&{n-3}&{n-2}&{n-1}\end{array}|$中,记位于第i行j列的数为aij(i,j=1,2,…,n),当n=7时,表中所有满足2i<j的aij和为41.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=4Sn-1(n∈N*)则数列{an}的通项公式为an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.袋子中装有大小相同的5个小球,分别有 2个红球,3个白球.现从中随机抽取2个小球,则这2个球中既有红球也有白球的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知直线l:x-y+3=0被圆(x-a)2+(y-2)2=4截得的弦长为2$\sqrt{3}$时,实数a的值为-1±$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=$\left\{{\begin{array}{l}{1+{{log}_2}({2-x}),x<1}\\{{2^{x-1}},x≥1}\end{array}}$,则f(-6)+f(log212)=(  )
A.10B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.cos1050°=(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2lnx+$\frac{1}{2}{x^2}-({a+1})x$,a∈R.
(1)若函数f(x)在点(1,f(1))处的切线与x轴平行,求实数a值;
(2)若函数f(x)在区间(2,3)上单调递减,求实数a的取值范围;
(3)设x=m和x=n是函数f(x)的两个极值点,其中m<n,若a≥$\sqrt{2e}+\sqrt{\frac{2}{e}}$-1,求证:f(n)-f(m)≤2-e+$\frac{1}{e}$.(e是自然对数的底数)

查看答案和解析>>

同步练习册答案