精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=$\left\{{\begin{array}{l}{1+{{log}_2}({2-x}),x<1}\\{{2^{x-1}},x≥1}\end{array}}$,则f(-6)+f(log212)=(  )
A.10B.6C.9D.12

分析 直接利用分段函数求解函数值即可.

解答 解:函数f(x)=$\left\{{\begin{array}{l}{1+{{log}_2}({2-x}),x<1}\\{{2^{x-1}},x≥1}\end{array}}$,
则f(-6)+f(log212)=1+log2(2+6)+${2}^{lo{g}_{2}12-1}$
=1+3+6
=10.
故选:A.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.定义在(0,+∞)上的可导函数f(x)满足:当x∈(0,e)时f(x)+xf′(x)>$\frac{1}{e}$当x∈(e,+∞)时f(x)+xf′(x)<$\frac{1}{e}$则下列对于2f(2),3f(3)大小关系的结论成立的是(  )
A.2f(2)>3f(3)B.2f(2)<3f(3)C.2f(2)=3f(3)D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○●…
若依此规律继续下去,得到一系列的○和●,那么在前150个○和●中,●的个数是(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知全集U={x|1≤x≤5}.A={x|1≤x<a},若∁UA={x|2≤x≤5},a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若a=30.3,b=(0.3)2,c=log30.2,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知P(-2,1),Q(2,t).点M为直线y+1=0上的动点.若存在以PQ为直径的圆过点M,则实数t的取值范围为t≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在直角坐标系内,射线OT落在60°的终边上,任作一条射线OA,则射线落在∠xOT内的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.以上全不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a=($\sqrt{2}$)-1,b=log23,c=lne,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2x+$\frac{1}{x}$-lnx.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程; 
(2)求函数f(x)的极值.

查看答案和解析>>

同步练习册答案