精英家教网 > 高中数学 > 题目详情
16.已知a=($\sqrt{2}$)-1,b=log23,c=lne,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

分析 直接利用对数函数的性质比较三个数与0和1的大小得答案.

解答 解:∵a=($\sqrt{2}$)-1<$(\sqrt{2})^{0}=1$,
b=log23>log22=1,
c=lne=1,
∴a<c<b,
故选:B.

点评 本题考查对数的大小比较,考查对数函数的性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在n行n列矩阵$|\begin{array}{l}{1}&{2}&{3}&{…}&{n-2}&{n-1}&{n}\\{2}&{3}&{4}&{…}&{n-1}&{n}&{1}\\{3}&{4}&{5}&{…}&{n}&{1}&{2}\\{…}&{…}&{…}&{…}&{…}&{…}&{…}\\{n}&{1}&{2}&{…}&{n-3}&{n-2}&{n-1}\end{array}|$中,记位于第i行j列的数为aij(i,j=1,2,…,n),当n=7时,表中所有满足2i<j的aij和为41.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=$\left\{{\begin{array}{l}{1+{{log}_2}({2-x}),x<1}\\{{2^{x-1}},x≥1}\end{array}}$,则f(-6)+f(log212)=(  )
A.10B.6C.9D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.cos1050°=(  )
A.-$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.有一休闲广场东侧建造一座钟楼,顶部嵌入一座大型时钟,钟面中心O距离地面30米,时钟分钟OP(P为分针末端)长8米,该挂钟于6月1日0点分开始揭幕启动.记经过t分钟时P距离地面的高度为h(t)米.
(Ⅰ)求h(t)的函数解析式;
(Ⅱ)求启动后1小时内,h=26,t为何值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=lg$\frac{1+{2}^{x}+{3}^{x}+…+{n}^{x}a}{n}$,其中a∈R,n∈N*,n≥2.
(1)当n=2时,不等式f(x)>lg(x2x-1)有解,求实数a的取值范围;
(2)如果f(x)当x∈(-∞,1]时有意义,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合A={x|x2+2x-3>0},B={x|x2-2ax-1≤0,a>0},若A∩B中恰有一个整数,则实数a的取值范围是(  )
A.(0,$\frac{3}{4}$)B.[$\frac{3}{4}$,$\frac{4}{3}$)C.$[\frac{3}{4},+∞)$D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2lnx+$\frac{1}{2}{x^2}-({a+1})x$,a∈R.
(1)若函数f(x)在点(1,f(1))处的切线与x轴平行,求实数a值;
(2)若函数f(x)在区间(2,3)上单调递减,求实数a的取值范围;
(3)设x=m和x=n是函数f(x)的两个极值点,其中m<n,若a≥$\sqrt{2e}+\sqrt{\frac{2}{e}}$-1,求证:f(n)-f(m)≤2-e+$\frac{1}{e}$.(e是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列函数的积分.
(1)${∫}_{0}^{1}$(x2+$\sqrt{x}$)dx;                   
(2)${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx.

查看答案和解析>>

同步练习册答案