精英家教网 > 高中数学 > 题目详情
11.有一休闲广场东侧建造一座钟楼,顶部嵌入一座大型时钟,钟面中心O距离地面30米,时钟分钟OP(P为分针末端)长8米,该挂钟于6月1日0点分开始揭幕启动.记经过t分钟时P距离地面的高度为h(t)米.
(Ⅰ)求h(t)的函数解析式;
(Ⅱ)求启动后1小时内,h=26,t为何值.

分析 (Ⅰ)设h(t)的函数解析式为h(t)=Asin(ωt+θ)+B,利用条件求出参数,即可求h(t)的函数解析式;
(Ⅱ)8cos($\frac{π}{30}$t)+30=26,cos($\frac{π}{30}$t)=-$\frac{1}{2}$,即可求启动后1小时内,h=26,t为何值.

解答 解:(Ⅰ)设h(t)的函数解析式为h(t)=Asin(ωt+θ)+B,则$\left\{\begin{array}{l}{A+B=38}\\{-A+B=22}\end{array}\right.$,∴A=8,B=30;
∵T=$\frac{2π}{ω}$=60,∴ω=$\frac{π}{30}$.
t=0时,h(0)=8sinθ+30=38,∴θ=$\frac{π}{2}$,
∴h(t)=8sin($\frac{π}{30}$t+$\frac{π}{2}$)+30=8cos($\frac{π}{30}$t)+30;
(Ⅱ)8cos($\frac{π}{30}$t)+30=26,∴cos($\frac{π}{30}$t)=-$\frac{1}{2}$,
∵0≤t≤60,∴t=20或40分钟.

点评 本题考查三角函数模型的运用,考查学生的计算能力,正确建立函数模型是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若a=30.3,b=(0.3)2,c=log30.2,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在直角坐标系内,射线OT落在60°的终边上,任作一条射线OA,则射线落在∠xOT内的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.以上全不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若$\overrightarrow{a}$,$\overrightarrow{b}$为夹角为90°的单位向量,若向量$\overrightarrow{m}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{n}$=-3$\overrightarrow{a}$+2$\overrightarrow{b}$,则|2$\overrightarrow{m}$+$\overrightarrow{n}$|=$\sqrt{37}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a=($\sqrt{2}$)-1,b=log23,c=lne,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=x2-x,g(x)=$\frac{x+1}{x}$,若F(x)=f(x)•g(x),则函数F(x)的奇偶性是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,有一段长为18米的屏风ABCD(其中AB=BC=CD=6米),靠墙l围成一个四边形,设∠DAB=α.

(1)当α=60°,且BC⊥CD时,求AD的长;
(2)当BC∥l,且AD>BC时,求所围成的等腰梯形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.曲线y=xex+1在点(1,e+1)处的切线方程是(  )
A.2ex-y-e+1=0B.2ey-x+e+1=0C.2ex+y-e+1=0D.2ey+x-e+1=0

查看答案和解析>>

同步练习册答案