分析 设出点P(x,y),利用两点间距离公式、点到直线的距离公式计算即得结论.
解答 解:设点P(x,y),
依题意$\frac{1}{3}$=$\frac{\sqrt{(x-0)^{2}+(y-3)^{2}}}{|y-9|}$,
∴$\frac{1}{9}=\frac{{x}^{2}+(y-3)^{2}}{(y-9)^{2}}$,
整理得:9x2+8y2-36y=0,
即$\frac{{x}^{2}}{\frac{9}{2}}+\frac{(y-\frac{9}{4})^{2}}{\frac{81}{16}}=1$.
∴点P的轨迹方程为即$\frac{{x}^{2}}{\frac{9}{2}}+\frac{(y-\frac{9}{4})^{2}}{\frac{81}{16}}=1$,轨迹是中心为(0,$\frac{9}{4}$),F为一个焦点,l为相应准线的椭圆.
点评 本题考查了两点之间的距离公式、椭圆的标准方程,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$,-7 | B. | $\frac{π}{4}$,$\frac{1}{7}$ | C. | $\frac{3π}{4}$,-7 | D. | $\frac{π}{4}$,-7或$\frac{1}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{e-2}{2e}$) | B. | ($\frac{e-2}{2e}$,$\frac{e-1}{e}$) | C. | ($\frac{e-1}{e}$,$\frac{{{e^2}-1}}{e}$) | D. | ($\frac{{{e^2}-1}}{e}$,$\frac{{2{e^2}-1}}{e}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 16 | C. | 1 | D. | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com