精英家教网 > 高中数学 > 题目详情
16.已知a>0,函数f(x)=lnx-a(x-1),g(x)=ex.经过原点分别作曲线y=f(x)、y=g(x)的切线l1、l2,若两切线的斜率互为倒数,则的a取值范围是(  )
A.(0,$\frac{e-2}{2e}$)B.($\frac{e-2}{2e}$,$\frac{e-1}{e}$)C.($\frac{e-1}{e}$,$\frac{{{e^2}-1}}{e}$)D.($\frac{{{e^2}-1}}{e}$,$\frac{{2{e^2}-1}}{e}$)

分析 分别设出切线l1、l2的切点,求得函数的导数,可得切线的斜率,以及切线的方程,结合两点的斜率公式,可得a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$.消去a,可得lnx1-1+$\frac{1}{{x}_{1}}$-$\frac{1}{e}$=0,令m(x)=lnx-1+$\frac{1}{x}$-$\frac{1}{e}$=0,求得导数,判断单调性,可得x1的范围,进而得到所求范围.

解答 解:设切线l2的方程为y=k2x,切点为(x2,y2),
则y2=ex2,k2=g′(x2)=${e}^{{x}_{2}}$=$\frac{{y}_{2}}{{x}_{2}}$,
所以x2=1,y2=e,则k2=${e}^{{x}_{2}}$=e.
由题意知,切线l1的斜率为k1=$\frac{1}{{k}_{2}}$=$\frac{1}{e}$,l1的方程为y=k1x=$\frac{1}{e}$x.
设l1与曲线y=f(x)的切点为(x1,y1),
则k1=f′(x1)=$\frac{1}{{x}_{1}}$-a=$\frac{1}{e}$=$\frac{{y}_{1}}{{x}_{1}}$,
所以y1=$\frac{{x}_{1}}{e}$=1-ax1,a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$.
又因为y1=lnx1-a(x1-1),消去y1和a后,整理得lnx1-1+$\frac{1}{{x}_{1}}$-$\frac{1}{e}$=0.      
令m(x)=lnx-1+$\frac{1}{x}$-$\frac{1}{e}$=0,则m′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
m(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
若x1∈(0,1),因为m($\frac{1}{e}$)=-2+e-$\frac{1}{e}$>0,m(1)=-$\frac{1}{e}$<0,
所以x1∈($\frac{1}{e}$,1),
而a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$在x1∈($\frac{1}{e}$,1)上单调递减,所以$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$.
若x1∈(1,+∞),因为m(x)在(1,+∞)上单调递增,且m(e)=0,则x1=e,
所以a=$\frac{1}{{x}_{1}}$-$\frac{1}{e}$=0(舍去).
综上可知,$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$.
故选:C.

点评 本题考查了利用导数求曲线的切线问题及单调性的运用,考查了化简整理的计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥E-ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求证:BD⊥平面ADE;
(2)求直线BE和平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列说法正确的个数是(  )
①对事件A与B的检验无关时,即两个互不影响;
②事件A与B关系密切,则K2就越大;
③K2的大小是判定事件A与B是否相关的唯一根据;
④若判定两个事件A与B有关,则A发生B一定发生.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下面几种推理过程是演绎推理的是(  )
A.在数列{an}中,a1=1,an=$\frac{1}{2}$(an-1+$\frac{1}{{a}_{n-1}}$)(n∈N*),由其归纳出{an}的通项公式
B.由平面三角形的性质,推测空间四面体性质
C.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°
D.某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.点P到定点F(0,3)的距离和它到定直线y=9的距离的比为1:3,求点P的轨迹方程,并指出轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.$\overrightarrow{AB}$+$\overrightarrow{CD}$+$\overrightarrow{DA}$+$\overrightarrow{BC}$=(  )
A.$\overrightarrow{BD}$B.$\overrightarrow{AC}$C.$\overrightarrow 0$D.$\overrightarrow{AB}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)解不等式$\frac{x-3}{x+7}$<0.
(2)若关于不等式x2-4ax+4a2+a≤0的解集为∅,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.圆x2+y2-2x=0和圆x2+y2+4y=0的位置关系是相交.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,AB=2,AC=3,∠BAC=60°,D为BC边上的点且2BD=DC,则|AD|=(  )
A.2B.$\frac{5}{3}$C.$\frac{{\sqrt{37}}}{3}$D.$\frac{{\sqrt{35}}}{3}$

查看答案和解析>>

同步练习册答案