分析 (1)由题意可得:$\left\{\begin{array}{l}{x-3>0}\\{x+7<0}\end{array}\right.$,或$\left\{\begin{array}{l}{x-3<0}\\{x+7>0}\end{array}\right.$,进而即可得解.
(2)利用不等式恒成立的条件进行求解.
解答 解:(1)∵$\frac{x-3}{x+7}$<0.
∴可得:$\left\{\begin{array}{l}{x-3>0}\\{x+7<0}\end{array}\right.$,或$\left\{\begin{array}{l}{x-3<0}\\{x+7>0}\end{array}\right.$,
∴解得:-7<x<3.
∴不等式的解集为{x|-7<x<3}.
(2)要使不等式的解集为∅,则必有△=(4a)2-4(4a2+a)<0,
∴解得:a>0.
∴实数a的取值范围为:(0,+∞).
点评 本题考查不等式的解法,考查不等式恒成立问题,解题时要认真审题,注意等价转化思想和分式不等式的性质的合理运用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$,-7 | B. | $\frac{π}{4}$,$\frac{1}{7}$ | C. | $\frac{3π}{4}$,-7 | D. | $\frac{π}{4}$,-7或$\frac{1}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{e-2}{2e}$) | B. | ($\frac{e-2}{2e}$,$\frac{e-1}{e}$) | C. | ($\frac{e-1}{e}$,$\frac{{{e^2}-1}}{e}$) | D. | ($\frac{{{e^2}-1}}{e}$,$\frac{{2{e^2}-1}}{e}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{16}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com