精英家教网 > 高中数学 > 题目详情
18.若x,y满足条件$\left\{\begin{array}{l}{x+y≤3}\\{y≤2x}\end{array}\right.$,则z=log ${\;}_{\frac{1}{2}}$(2x+3y)的最小值是-3.

分析 作出已知不等式组的简单线性规划,如图所示,确定出最高点,根据对数函数的性质确定出所求最小值即可.

解答 解:作出$\left\{\begin{array}{l}{x+y≤3}\\{y≤2x}\end{array}\right.$的简单线性规划,如图所示,
联立得:$\left\{\begin{array}{l}{x+y=3}\\{y=2x}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即x+y=3与y=2x的交点坐标为(1,2),为最高点,
∵a=$\frac{1}{2}$时,对数函数y=log${\;}_{\frac{1}{2}}$x为减函数,
∴z=log ${\;}_{\frac{1}{2}}$(2x+3y)的最小值为z=log${\;}_{\frac{1}{2}}$(2×1+3×2)=-3,
故答案为:-3

点评 此题考查了对数函数的图象与性质,根据题意画出简单线性规划是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.(1)解不等式$\frac{x-3}{x+7}$<0.
(2)若关于不等式x2-4ax+4a2+a≤0的解集为∅,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={y|y=-x2+5},B={x|y=$\sqrt{x-3}$},A∩B=(  )
A.[1,+∞)B.[1,3]C.(3,5]D.[3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,AB=2,AC=3,∠BAC=60°,D为BC边上的点且2BD=DC,则|AD|=(  )
A.2B.$\frac{5}{3}$C.$\frac{{\sqrt{37}}}{3}$D.$\frac{{\sqrt{35}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=asinxcosx-sin2x+$\frac{1}{2}$的一条对称轴方程为x=$\frac{π}{6}$,则函数f(x)的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知M(x0,y0)是椭圆C:$\frac{{x}^{2}}{4}$+y2=1上的一点,F1,F2是C上的两个焦点,若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$<0,则x0的取值范围是(  )
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-$\frac{\sqrt{3}}{6}$,$\frac{\sqrt{3}}{6}$)C.(-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$)D.(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x的最大值为(  )
A.2B.3C.2+$\sqrt{3}$D.2-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知F(1,0),过点A(-1,t)作y轴的垂线,与线段AF的垂直平方分线交于点M,点M的轨迹为曲线E.
(Ⅰ)求曲线E的方程;
(Ⅱ)自直线y=2x+3上的动点N作曲线E的两条切线,两切点分别为P,Q,求证:直线PQ经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=|x-2|,g(x)=m|x|-2,(m∈R).
(1)解关于x的不等式f(x)>x+3;
(2)若对于任意x∈R,有f(x)-g(x)≥0,求实数m的最大值.

查看答案和解析>>

同步练习册答案