精英家教网 > 高中数学 > 题目详情
6.如图,四棱锥E-ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求证:BD⊥平面ADE;
(2)求直线BE和平面CDE所成角的正弦值.

分析 (1)由勾股定理得出AD=BD=2$\sqrt{2}$,故而AD⊥BD,由面面垂直的性质得出BD⊥平面ADE;
(2)以D为原点建立坐标系,求出$\overrightarrow{BE}$和平面CDE的法向量$\overrightarrow{n}$,则直线BE和平面CDE所成角的正弦值为|cos<$\overrightarrow{n},\overrightarrow{BE}$>|.

解答 解:(1)∵EA=ED=2,EA⊥ED,∴AD=2$\sqrt{2}$.
∵BC=CD=2,BC⊥CD,∴BD=2$\sqrt{2}$
又AB=4,∴AD2+BD2=AB2,∴AD⊥BD.
又平面EAD⊥平面ABCD,平面EAD∩平面ABCD=AD,BD?平面ABCD,
∴BD⊥平面ADE.
(2)取AD的中点F,连接EF,则EF⊥平面ABCD,EF=$\sqrt{2}$.
过D点作直线Oz∥EF,则Oz⊥平面ABCD.
以D为坐标原点,以DA,DB,Dz为坐标轴建立空间直角坐标系D-xyz,
∴D(0,0,0),C(-$\sqrt{2}$,$\sqrt{2}$,0),B(0,2$\sqrt{2}$,0),E($\sqrt{2}$,0,$\sqrt{2}$),
∴$\overrightarrow{BE}$=($\sqrt{2}$,-2$\sqrt{2}$,$\sqrt{2}$),$\overrightarrow{DE}$=($\sqrt{2}$,0,$\sqrt{2}$),$\overrightarrow{DC}$=(-$\sqrt{2}$,$\sqrt{2}$,0).
设平面CDE的一个法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DE}=0}\\{\overrightarrow{n}•\overrightarrow{DC}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{\sqrt{2}x+\sqrt{2}z=0}\\{-\sqrt{2}x+\sqrt{2}y=0}\end{array}\right.$,设x=1得$\overrightarrow{n}$=(1,1,-1).
∴cos<$\overrightarrow{n},\overrightarrow{BE}$>=$\frac{\overrightarrow{n}•\overrightarrow{BE}}{|\overrightarrow{n}||\overrightarrow{BE}|}$=$\frac{-2\sqrt{2}}{\sqrt{3}•2\sqrt{3}}$=-$\frac{\sqrt{2}}{3}$.
∴直线BE和平面CDE所成角的正弦值为$\frac{\sqrt{2}}{3}$.

点评 本题考查了线面垂直的判定,空间向量的应用与线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知体积为4$\sqrt{6}$的长方体的八个顶点都在球O的球面上,在这个长方体经过一个顶点的三个面中,如果有两个面的面积分别为2$\sqrt{3}$、4$\sqrt{3}$,那么球O的体积等于(  )
A.$\frac{32π}{3}$B.$\frac{16\sqrt{7}π}{3}$C.$\frac{33π}{2}$D.$\frac{11\sqrt{7}π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知α、β∈(0,π),且sin(α+β)=$\frac{5}{13}$,$tan\frac{α}{2}$=$\frac{1}{2}$.
(1)求sinα、cosα的值;
(2)求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ln(x-1),g(x)=$\frac{{a({x-2})}}{x-1}$.
(1)讨论函数G(x)=f(x)-g(x)的单调性;
(2)若数列{an}满足a1=1,an+1=f(an+2).证明:对任意n∈N+,恒有$\frac{1}{n}≤{a_n}$≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知正方体ABCD-A′B′C′D′.

(1)设M,N分别是A′D′,A′B′的中点,试在下列三个正方体中各作出一个过正方体顶点且与平面AMN平行的平面(不用写过程)
(2)设S是B′D′的中点,F,G分别是DC,SC的中点,求证:直线GF∥平面BDD′B′.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=cosx的定义域为[a,b],值域为[-$\frac{1}{2}$,1],则b-a的最小值为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.复数$\frac{5+i}{2-i}$(i是虚数单位)的虚部是$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a,b,c均为正数且a+b+c=9,则$\frac{4}{a}$+$\frac{9}{b}$+$\frac{16}{c}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a>0,函数f(x)=lnx-a(x-1),g(x)=ex.经过原点分别作曲线y=f(x)、y=g(x)的切线l1、l2,若两切线的斜率互为倒数,则的a取值范围是(  )
A.(0,$\frac{e-2}{2e}$)B.($\frac{e-2}{2e}$,$\frac{e-1}{e}$)C.($\frac{e-1}{e}$,$\frac{{{e^2}-1}}{e}$)D.($\frac{{{e^2}-1}}{e}$,$\frac{{2{e^2}-1}}{e}$)

查看答案和解析>>

同步练习册答案