精英家教网 > 高中数学 > 题目详情
17.已知α、β∈(0,π),且sin(α+β)=$\frac{5}{13}$,$tan\frac{α}{2}$=$\frac{1}{2}$.
(1)求sinα、cosα的值;
(2)求cosβ的值.

分析 (1)由条件利用同角三角函数的基本关系求得α∈($\frac{π}{4}$,$\frac{π}{3}$)、α+β∈($\frac{5π}{6}$,π),从而求得cos(α+β)、sinα、cosα的值.
(2)利用两角和差的余弦公式,求得cosβ=cos[(α+β)-α]的值.

解答 解:(1)∵α、β∈(0,π),∵$tan\frac{α}{2}$=$\frac{1}{2}$,
∴tanα=$\frac{2tan\frac{α}{2}}{1{-tan}^{2}\frac{α}{2}}$=$\frac{4}{3}$>1,∴α∈($\frac{π}{4}$,$\frac{π}{3}$).
∵sin(α+β)=$\frac{5}{13}$<$\frac{1}{2}$,∴sinα>sin(α+β)=$\frac{5}{13}$,
∴α+β∈($\frac{5π}{6}$,π),cos(α+β)=-$\sqrt{{1-sin}^{2}(α+β)}$=-$\frac{12}{13}$.
∴sinα=$\frac{2tan\frac{α}{2}}{1{+tan}^{2}\frac{α}{2}}$=$\frac{4}{5}$,cosα=$\frac{1{-tan}^{2}\frac{α}{2}}{1{+tan}^{2}\frac{α}{2}}$=$\frac{3}{5}$.
(2)cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα
=-$\frac{12}{13}$•$\frac{3}{5}$+$\frac{5}{13}$•$\frac{4}{5}$=-$\frac{16}{65}$.

点评 本题主要考查同角三角函数的基本关系、两角和差的余弦公式的应用,属于基中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知f($\frac{x-1}{x}$)=$\frac{x+2}{3x-4}$,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.三棱锥P-ABC中,△ABC为正三角形且边长为$\sqrt{3}$,平面PAB⊥平面ABC,PA⊥PB,则三棱锥P-ABC的外接球的表面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知过点A(-2,m)和B(m,4)的直线与直线2x+y+1=0平行,则m的值为(  )
A.8B.-8C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知中心在原点,焦点F1、F2在x轴上的双曲线经过点P(4,2),△PF1F2的内切圆与x轴相切于点Q(2$\sqrt{2}$,0),则该双曲线的离心率为(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=9,an+1=an+2n+5;数列{bn}满足b1=$\frac{1}{4}$,bn+1=$\frac{n+1}{n+2}$bn(n≥1).
(1)求an,bn
(2)记数列{${\frac{b_n}{{\sqrt{a_n}}}}$}的前n项和为Sn,证明:$\frac{1}{12}$≤Sn<$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(1)若p:?x∈R,x2+x+1<0,则非p:?x∈R,x2+x+1<0
(2)若p∨q为真命题,则p∧q也为真命题
(3)“函数f(x)为奇函数”是“f(0)=0”的既不充分也不必要条件
(4)命题“若x2-3x+2=0,则x=1”的否命题为真命题
(5)若(a+1)${\;}^{\frac{1}{2}}$<(3-2a)${\;}^{\frac{1}{2}}$,则a的取值范围是a<$\frac{2}{3}$
以上命题正确的是(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥E-ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求证:BD⊥平面ADE;
(2)求直线BE和平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列说法正确的个数是(  )
①对事件A与B的检验无关时,即两个互不影响;
②事件A与B关系密切,则K2就越大;
③K2的大小是判定事件A与B是否相关的唯一根据;
④若判定两个事件A与B有关,则A发生B一定发生.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案