分析 把两圆的方程化为标准方程,分别找出圆心坐标和半径,利用两点间的距离公式,求出两圆心的距离d,然后求出R-r和R+r的值,判断d与R-r及R+r的大小关系即可得到两圆的位置关系.
解答 解:把圆x2+y2-2x=0与圆x2+y2+4y=0分别化为标准方程得:
(x-1)2+y2=1,x2+(y+2)2=4,
故圆心坐标分别为(1,0)和(0,-2),半径分别为R=2和r=1,
∵圆心之间的距离d=$\sqrt{(1-0)^{2}+(0+2)^{2}}=\sqrt{5}$,则R+r=3,R-r=1,
∴R-r<d<R+r,
∴两圆的位置关系是相交.
故答案为:相交.
点评 本题考查了圆与圆的位置关系,圆与圆的位置关系有五种,分别是:当0≤d<R-r时,两圆内含;当d=R-r时,两圆内切;当R-r<d<R+r时,两圆相交;当d=R+r时,两圆外切;当d>R+r时,两圆外离(其中d表示两圆心间的距离,R,r分别表示两圆的半径),是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{e-2}{2e}$) | B. | ($\frac{e-2}{2e}$,$\frac{e-1}{e}$) | C. | ($\frac{e-1}{e}$,$\frac{{{e^2}-1}}{e}$) | D. | ($\frac{{{e^2}-1}}{e}$,$\frac{{2{e^2}-1}}{e}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{16}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.48 | B. | 0.6 | C. | 0.7 | D. | 0.75 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com