精英家教网 > 高中数学 > 题目详情
如图所示,△ABC是圆O的内接三角形,AC=BC,D为弧AB上任一点,延长DA至点E,使CE=CD.
(Ⅰ)求证:BD=AE;
(Ⅱ)若AC⊥BC,求证:AD+BD=
2
CD
考点:与圆有关的比例线段
专题:直线与圆
分析:(Ⅰ)由题意知∠CAD=∠E+∠ECA=∠CAB+∠BAD,由此能够证明△ECA≌△DCB,从而得到BD=AE.
(Ⅱ)由已知条件推导出∠ECA+∠ACD=90°,DE=2
2
CD
,由此能够证明AD+CD=
2
CD.
解答: (Ⅰ)证明:由题意知∠CAD=∠E+∠ECA=∠CAB+∠BAD,
∵AC=BC,∴∠CAB=∠DCB,∴∠ECA=∠DCB,
∴△ECA≌△DCB,∴BD=AE.
(Ⅱ)证明:∵AC⊥BC,∴∠ACB=90°=∠DAB+∠ACD,
∴∠ECA+∠ACD=90°,∵CE=CD,∴DE=2
2
CD

∵BD=AE,AD+BD=DE,
∴AD+CD=
2
CD.
点评:本题考查线段长相等的证明,是中档题,解题时要认真审题,注意圆的简单性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在周长为定值的△DEC中,已知|DE|=8,动点C的运动轨迹为曲线G,且当动点C运动时,cosC有最小值-
7
25

(1)以DE所在直线为x轴,线段DE的中垂线为y轴建立直角坐标系,求曲线G的方程;
(2)直线l分别切椭圆G与圆M:x2+y2=R2(其中3<R<5)于A、B两点,求|AB|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,直线l:y=
3
(x-4)
关于直线l1:y=
b
a
x
对称的直线l′与x轴平行.
(1)求双曲线的离心率;
(2)若点M(4,0)到双曲线上的点P的最小距离等于1,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
x-3
x+3
,g(x)=1+loga(x-1),(a>0且a≠1),设f(x)和g(x)的定义域的公共部分为D,当[m,n]?D时,f(x)在[m,n](m<n)上的值域是[g(n),g(m)],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b是区间[0,3]上的两个随机数,则直线ax+by+3=0与圆x2+y2=1没有公共点的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知首项为正数的等差数列{an}中,a1a2=-2.则当a3取最大值时,数列{an}的公差d=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设区域Ω是由直线x=0,x=π和y=±1所围成的平面图形,区域D是由余弦曲线y=cosx和直线x=0,x=
π
2
和y=-1所围成的平面图形,在区域Ω内随机抛掷一粒豆子,则该豆子落在区域D的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-1,3]上随机取一个数x,则|x|≤1的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c,其中:0≤b≤2,0≤c≤2,记函数f(x)满足条件
f(2)≤8
f(-2)≤4
为事件A,则事件A发生的概率为(  )
A、
1
4
B、
5
8
C、
3
8
D、
1
2

查看答案和解析>>

同步练习册答案