精英家教网 > 高中数学 > 题目详情
20.已知集合A={x|x≥1},B={x|x>2a+1},若A∩(∁RB)=∅,则实数a的取值范围是(  )
A.(1,+∞)B.(0,+∞)C.(-∞,1)D.(-∞,0)

分析 由题意和补集的运算求出∁RB,由交集的运算和A∩(∁RB)=∅,列出不等式求出a的范围.

解答 解:由题意得,B={x|x>2a+1},
则∁RB={x|x≤2a+1},
∵A={x|x≥1},A∩(∁RB)=∅,
∴2a+1<1,得a<0,
∴实数a的取值范围是(-∞,0),
故选:D.

点评 本题考查了交、并、补集的混合运算,注意是端点值的取舍,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{2x+a,x≤1}\\{lo{g}_{2}x,x>1}\end{array}\right.$,若f(f($\frac{1}{2}$))=4,则a=(  )
A.16B.15C.2D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一条光线从A(-$\frac{1}{2}$,0)处射到点B(0,1)后被y轴反射,则反射光线所在直线的方程为(  )
A.2x-y-1=0B.2x+y-1=0C.x-2y-1=0D.x+2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=$\left\{\begin{array}{l}{{2}^{1-x},x≤1}\\{lo{g}_{4}(x-1),x>1}\end{array}\right.$,则2f(9)+f(log2$\frac{1}{6}$)=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算下列各式的值:
(1)$\frac{1}{\sqrt{2}-1}$-($\frac{3}{5}$)0+($\frac{9}{4}$)-0.5+$\root{4}{(\sqrt{2}-e)^{4}}$;
(2)lg500+lg$\frac{8}{5}$-$\frac{1}{2}$lg64+50(lg2+lg5)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥S-ABCD中,底面ABCD为菱形,∠BAD=60°,平面SAD⊥平面ABCD,SA=SD,E,P,Q分别是棱AD,SC,AB的中点.
(1)(文理)求证:PQ∥平面SAD;
(2)(理)如果SA=AB=2,求直线SA与平面SEQ成角的余弦值.
(文)如果SA=AB=2,求点C到平面SAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x,y满足约束条件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+2by(a>0,b>0)的最大值为1,则$\frac{1}{{a}^{2}}$+$\frac{1}{4{b}^{2}}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知在($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)n的展开式中第6项为常数项.
(1)求展开式中所有项的二项式系数和;
(2)求展开式中所有项的系数和;
(3)求展开式中所有的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.方程组$\left\{\begin{array}{l}x-y=7\\ x+y=1\end{array}\right.$的解集是(  )
A.(4,3)B.{4,-3}C.{(4,3)}D.{(4,-3)}

查看答案和解析>>

同步练习册答案