精英家教网 > 高中数学 > 题目详情
12.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cost}\\{y=\sqrt{2}sint}\end{array}\right.$(t为参数),C在点(1,1)处的切线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求l的极坐标方程.

分析 化参数方程与普通方程,求出圆的圆心与半径,求出切线的斜率,然后求解切线方程,转化为极坐标方程.

解答 解:因为曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cost}\\{y=\sqrt{2}sint}\end{array}\right.$(t为参数),
所以其普通方程为x2+y2=2,即曲线C为以原点为圆心,$\sqrt{2}$为半径的圆.…(5分)
由于点(1,1)在圆上,且该圆过(1,1)点的半径的斜率为1,
所以切线l的斜率为-1,其普通方程为x+y-2=0,
化为极坐标方程为ρcosθ+ρsinθ=2,即$ρsin(θ+\frac{π}{4})=\sqrt{2}$.…(10分)

点评 本题考查参数方程与普通方程以及极坐标方程的互化,直线与圆的位置关系的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在曲线y=x3+x-2的切线中,与直线4x-y=1平行的切线方程是4x-y=0或4x-y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,PA⊥PC,AB=BC,点M,N分别为PC,AC的中点.求证:
(1)直线PA∥平面BMN;
(2)平面PBC⊥平面BMN.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算$\int_0^2$f(x)dx,其中,f(x)=$\left\{\begin{array}{l}2x\begin{array}{l},{0≤x<1}\end{array}\\ 5\begin{array}{l},{\begin{array}{l}{\;\;\;1≤x≤2.}{\;}\end{array}}\end{array}\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程$\widehat{y}$=0.85x-85.71,则下列结论中不正确的是(  )
A.若该大学某女生身高增加1cm,则其体重约增加0.85kg
B.回归直线过样本的中心($\overline{x}$,$\overline{y}$)
C.y与x具有正的线性相关关系
D.若该大学某女生身高为170cm,则可断定其体重必为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在斜三角形△ABC中,A=45°,H是△ABC的垂心,λ$\overrightarrow{AH}$=$\frac{\overrightarrow{AB}}{tanC}$+$\frac{\overrightarrow{AC}}{tanB}$,则λ=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知0<x<8,则(8-x)x的最大值是16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=ex+ax-2,其中a∈R,若对于任意的x1,x2∈[1,+∞),且x1<x2,都有x2•f(x1)-x1•f(x2)<a(x1-x2)成立,则a的取值范围是(  )
A.[1,+∞)B.[2,+∞)C.(-∞,1]D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是调查某地区男女中学生是否喜欢理科的等高条形图,从如图可以看出该地区的中学生(  )
A.性别与是否喜欢理科无关B.女生中喜欢理科的比为80%
C.男生比女生喜欢理科的可能性大D.男生中喜欢理科的比例为80%

查看答案和解析>>

同步练习册答案