精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+
2a
x
(x>0).
(1)求函数f(x)的单调区间;
(2)当a=
1
2
时,若P(x1,f(x1)),Q(x2f(x2))(0<x1<x2)是函数图象上的两点,且存在实数x0>0,使得f′(x0)=
f(x2)-f(x1)
x2-x1
.证明:x1<x0<x2
(1)f′(x)=2x-
2a
x2
=
2x3-2a
x2
                                        …(1分)
①当a≤0时,f′(x)>0,函数在(0,+∞)上单调递增;                        …(3分)
②当a>0时,当0<x<
3a
时,f′(x)<0,函数在(0,
3a
)上单调递减;
当x>
3a
时,f′(x)>0,函数在[
3a
,+∞)上单调递增.…(5分)
综上可知,当a≤0时,函数f(x)单调递增,递增区间为(0,∞);
当a>0时,函数f(x)单调递减区间为(0,
3a
);单调递增区间为[
3a
,+∞).…(6分)
(2)当a=
1
2
时,f(x)=x2+
1
x
(x>0),此时f′(x)=2x-
1
x2
,…(7分)
f(x2)-f(x1)
x2-x1
=
(x22+
1
x2
)-(x12+
1
x1
)
x2-x1
=
(x2-x1)[(x2+x1)-
1
x1x2
]
x2-x1
=(x2+x1)-
1
x1x2

从而原等式为2x0-
1
x02
=(x2+x1)-
1
x1x2
.…(8分)
由题意可得x0是方程2x-
1
x2
-(x2+x1)+
1
x1x2
=0的根,…(9分)
令g(x)=2x-
1
x2
-(x2+x1)+
1
x1x2

g(x1)=2x1-
1
x12
+
1
x1x2
-x1-x2=(x1-x2)-
x2-x1
x12x2
=(x1-x2)(1+
1
x12x2
)<0,…(11分)
g(x2)=2x2-
1
x22
+
1
x1x2
-x1-x2=(x2-x1)-
x1-x2
x22x1
=(x2-x1)(1+
1
x1x22
)>0,…(12分)
g(x1)•g(x2)<0,由零点的存在性定理,可知:
∴x1<x0<x2.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案