精英家教网 > 高中数学 > 题目详情
18.设直线2x+3y+1=0与圆x2+y2-2x+4y=0相交于A,B,则弦AB的垂直平分线的方程为3x-2y-7=0.

分析 由已知圆的方程求出圆心坐标,再由已知直线方程求出所求直线的斜率,代入直线方程的点斜式得答案.

解答 解:由圆x2+y2-2x+4y=0,得(x-1)2+(y+2)2=5,
∴圆心坐标为(1,-2),
又直线2x+3y+1=0的斜率为$-\frac{2}{3}$,则所求直线的斜率为$\frac{3}{2}$.
∴弦AB的垂直平分线的方程为y-(-2)=$\frac{3}{2}(x-1)$.
整理得:3x-2y-7=0.
故答案为:3x-2y-7=0.

点评 本题考查圆的标准方程,考查了一般式化标准式,体现了数学转化思想方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.有以下几个命题:
①“若xy=1,则x,y互为倒数”的逆命题
②“面积相等的三角形全等”的否命题
③“若m≤1,则x2-2x+m=0有实数解”的逆否命题
其中真命题为(  )
A.①②③B.①③C.②③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=cos(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0)的最小正周期为π,且f($\frac{π}{4}}$)=$\frac{{\sqrt{3}}}{2}$.
(1)求ω和φ的值; 
(2)求f(x)的单调递增区间;  
(3)求f(x)在[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}满足a1+2a2+3a3+…+nan=(n+1)(n+2)(n∈N*),则an=$\left\{\begin{array}{l}{6,n=1}\\{2+\frac{2}{n},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.给定两个命题,命题P:函数f(x)=(a-1)x+3在R上是增函数; 命题q:关于x的方程x2-x+a=0有实数根. 若p∧q为假命题,p∨q为真命题,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{3}$cos2x+sinxcosx.
(1)求f($\frac{π}{12}$)的值;
(2)若α∈(0,π),f($\frac{α}{2}$)=$\frac{1}{4}$+$\frac{\sqrt{3}}{2}$,求sin(α+$\frac{7π}{12}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知在△ABC中,AC=3,G为重心,边AC的垂直平分线与BC交于点N,且$\overrightarrow{NG}$•$\overrightarrow{NC}$-$\overrightarrow{NG}$•$\overrightarrow{NA}$=-4,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=$-\frac{15}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将函数y=sinx图象向左平移$\frac{π}{4}$个单位,再将横坐标变为原来的$\frac{1}{ω}$(ω>0),纵坐标不变,得到函数y=f(x)的图象,若函数y=f(x)的图象在(0,$\frac{π}{2}$)上有且仅有一个对称中心,则ω的取值范围为(  )
A.($\frac{1}{2}$,$\frac{5}{2}$]B.($\frac{3}{2}$,$\frac{7}{2}$]C.[$\frac{3}{2}$,$\frac{7}{2}$)D.[$\frac{1}{2}$,$\frac{5}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若cosα=-$\frac{1}{3}$,则$\frac{cos(2π-α)sin(π+α)}{sin(\frac{π}{2}+α)•tan(3π-α)}$的值为-$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案