【题目】在平面直角坐标系
中,曲线
参数方程为
为参数),将曲线
上所有点的横坐标变为原来的
,纵坐标变为原来的
,得到曲线
.
(1)求曲线
的普通方程;
(2)过点
且倾斜角为
的直线
与曲线
交于
两点,求
取得最小值时
的值.
科目:高中数学 来源: 题型:
【题目】某省普通高中学业水平考试成绩按人数所占比例依次由高到低分为
,
,
,
,
五个等级,
等级
,
等级
,
等级
,
,
等级共
.其中
等级为不合格,原则上比例不超过
.该省某校高二年级学生都参加学业水平考试,先从中随机抽取了部分学生的考试成绩进行统计,统计结果如图所示.若该校高二年级共有1000名学生,则估计该年级拿到
级及以上级别的学生人数有( )
![]()
A.45人B.660人C.880人D.900人
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(Ⅰ)求k的值及f(x)的表达式。
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数).
(1)求函数
的极值;
(2)问:是否存在实数
,使得
有两个相异零点?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动直线
垂直于
轴,与椭圆
交于
两点,点
在直线
上,
.
(1)求点
的轨迹
的方程;
(2)直线
与椭圆
相交于
,与曲线
相切于点
,
为坐标原点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(
为自然对数的底数).
(1)求曲线
在
处的切线的方程;
(2)若对于任意实数
,
恒成立,试确定
的取值范围;
(3)当
时,函数
在
上是否存在极值?若存在,请求出极值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知抛物线
上的点
到焦点
的距离为2.
![]()
(1)求抛物线的方程;
(2)如图,点
是抛物线上异于原点的点,抛物线在点
处的切线与
轴相交于点
,直线
与抛物线相交于
两点,求
面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com