精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线参数方程为为参数),将曲线上所有点的横坐标变为原来的,纵坐标变为原来的,得到曲线.

1)求曲线的普通方程;

2)过点且倾斜角为的直线与曲线交于两点,求取得最小值时的值.

【答案】(1) ;(2)

【解析】

1)利用消去参数,求得曲线的直角坐标方程.根据坐标变换的知识求得的普通方程.

2)设出直线的参数方程,代入的方程并写出根与系数关系,求得弦长的表达式,并利用三角函数最值的求法求得取得最小值时的值.

1)将曲线参数方程为参数)的参数消去,得到直角坐标方程为,设上任意一点为,经过伸缩变换后的坐标为,由题意得:

,故

2)过点倾斜角为的直线的参数方程为:为参数),带入的方程得:

对于的参数分别为

故当时,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某省普通高中学业水平考试成绩按人数所占比例依次由高到低分为五个等级,等级等级等级等级共.其中等级为不合格,原则上比例不超过.该省某校高二年级学生都参加学业水平考试,先从中随机抽取了部分学生的考试成绩进行统计,统计结果如图所示.若该校高二年级共有1000名学生,则估计该年级拿到级及以上级别的学生人数有(

A.45B.660C.880D.900

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:Cx=若不建隔热层,每年能源消耗费用为8万元。设fx)为隔热层建造费用与20年的能源消耗费用之和。

)求k的值及f(x)的表达式。

)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)求函数的极值;

(2)问:是否存在实数,使得有两个相异零点?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动直线垂直于轴,与椭圆交于两点,点在直线上,.

1)求点的轨迹的方程;

2)直线与椭圆相交于,与曲线相切于点为坐标原点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)求曲线处的切线的方程;

(2)若对于任意实数恒成立,试确定的取值范围;

(3)当时,函数上是否存在极值?若存在,请求出极值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线上的点到焦点的距离为2.

1)求抛物线的方程;

2)如图,点是抛物线上异于原点的点,抛物线在点处的切线与轴相交于点,直线与抛物线相交于两点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)对任意,都有恒成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是直角斜边上一动点,将直角沿着翻折,使构成直二面角,则翻折后的最小值是_______

查看答案和解析>>

同步练习册答案