精英家教网 > 高中数学 > 题目详情

【题目】某省普通高中学业水平考试成绩按人数所占比例依次由高到低分为五个等级,等级等级等级等级共.其中等级为不合格,原则上比例不超过.该省某校高二年级学生都参加学业水平考试,先从中随机抽取了部分学生的考试成绩进行统计,统计结果如图所示.若该校高二年级共有1000名学生,则估计该年级拿到级及以上级别的学生人数有(

A.45B.660C.880D.900

【答案】D

【解析】

根据等级的人数和占比,可计算出样本容量.再根据扇形图可计算出等级一共的人数,即可估计该年级拿到级及以上级别的学生人数.

由条形图和扇形统计图可知,在抽取的部分学生中等级共有,占样本容量的

所以样本容量为

则样本中等级人数为

由条形图可知样本中等级人数为

所以在样本中级及以上级别的学生人数为

则该年级拿到级及以上级别的学生人数为

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1),求证:在区间是增函数;

(2),若对任意的,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的定义域恰是不等式的解集,其值域为,函数的定义域为,值域为.

1)求定义域和值域

2)试用单调性的定义法解决问题:若存在实数,使得函数上单调递减,上单调递增,求实数的取值范围并用表示

3)是否存在实数,使成立?若存在,求实数的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.

(1)求图中的值;

(2)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.

优质花苗

非优质花苗

合计

甲培育法

20

乙培育法

10

合计

附:下面的临界值表仅供参考.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是数列的前项和,对任意都有成立(其中是常数).

1)当时,求

2)当时,

①若,求数列的通项公式:

②设数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是数列,如果,试问:是否存在数列数列,使得对任意,都有,且,若存在,求数列的首项的所有取值构成的集合;若不存在.说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程和的直角坐标方程;

2)设是曲线上一点,此时参数,将射线绕原点逆时针旋转交曲线于点,记曲线的上顶点为点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,在四棱锥中,的中点。

(1)求证:

(2)线段上是否存在一点,满足?若存在,试求出二面角的余弦值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数存在单调增区间,求实数的取值范围;

2)若为函数的两个不同极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线参数方程为为参数),将曲线上所有点的横坐标变为原来的,纵坐标变为原来的,得到曲线.

1)求曲线的普通方程;

2)过点且倾斜角为的直线与曲线交于两点,求取得最小值时的值.

查看答案和解析>>

同步练习册答案