精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程和的直角坐标方程;

2)设是曲线上一点,此时参数,将射线绕原点逆时针旋转交曲线于点,记曲线的上顶点为点,求的面积.

【答案】(1) .(2)

【解析】

1)根据参数方程与直角坐标方程的转化,先将的参数方程转化为直角坐标方程.根据极坐标与直角坐标方程的转化,再将直角坐标方程转化为极坐标方程.根据极坐标与直角坐标方程的转化,的极坐标方程转化为直角坐标方程.

2)根据参数求得的极坐标.根据变换过程可得点的极坐标,根据三角形面积为即可求得的面积.

1)由已知可得

则极坐标方程为

.

2)设点的横坐标为,则由已知可得

且直角坐标,极坐标,其中,

极坐标,则有

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)讨论的单调性;

(2)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的最大值为,最小值为,则( )

A.存在实数,使

B.存在实数,使

C.对任意实数,有

D.对任意实数,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,经过轴正半轴上点的直线于不同的两点.

1)若,求点的坐标;

2)若,求证:原点总在以线段为直径的圆的内部;

3)若,且直线有且只有一个公共点,问:△的面积是否存在最小值?若存在,求出最小值,并求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省普通高中学业水平考试成绩按人数所占比例依次由高到低分为五个等级,等级等级等级等级共.其中等级为不合格,原则上比例不超过.该省某校高二年级学生都参加学业水平考试,先从中随机抽取了部分学生的考试成绩进行统计,统计结果如图所示.若该校高二年级共有1000名学生,则估计该年级拿到级及以上级别的学生人数有(

A.45B.660C.880D.900

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ABC的三个内角ABC所对的边分别是abc,向量(cos Bcos C)(2acb),且

(1)求角B的大小;

(2)b,求ac的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)求的最小正周期;

2)若将函数图像向左平移个单位后得到函数的图像,求函数在区间上的值域;

3)锐角三角形中,若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国的第一艘航空母舰辽宁舰在某次舰载机起降飞行训练中,有5-15”舰载机准备着舰,已知乙机不能最先着舰,丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)求曲线处的切线的方程;

(2)若对于任意实数恒成立,试确定的取值范围;

(3)当时,函数上是否存在极值?若存在,请求出极值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案