【题目】已知.
(1)求的最小正周期;
(2)若将函数图像向左平移个单位后得到函数的图像,求函数在区间上的值域;
(3)锐角三角形中,若,,求的面积.
科目:高中数学 来源: 题型:
【题目】已知点在椭圆上,、分别为的左、右顶点,直线与的斜率之积为,为椭圆的右焦点,直线.
(1)求椭圆的方程;
(2)直线过点且与椭圆交于、两点,直线、分别与直线交于、两点.试问:以为直径的圆是否过定点?如果是,求出定点坐标,否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在,实验地分别用甲、乙方法培训该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.
(1)求图中的值;
(2)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和的直角坐标方程;
(2)设是曲线上一点,此时参数,将射线绕原点逆时针旋转交曲线于点,记曲线的上顶点为点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图,在四棱锥中,面,,,,,,,为的中点。
(1)求证:面;
(2)线段上是否存在一点,满足?若存在,试求出二面角的余弦值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是圆:上的一动点,点,点在线段上,且满足.
(1)求点的轨迹的方程;
(2)设曲线与轴的正半轴,轴的正半轴的交点分别为点,,斜率为的动直线交曲线于、两点,其中点在第一象限,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若,证明:函数在上单调递减;
(Ⅱ)是否存在实数,使得函数在内存在两个极值点?若存在,求实数的取值范围;若不存在,请说明理由. (参考数据: , )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com