精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\left\{\begin{array}{l}{1-|x-1|,x<2}\\{2f(x-2),x≥2}\end{array}\right.$,g(x)=2${\;}^{\frac{x-1}{2}}$,设方程f(x)=g(x)的根从小到大依次为x1,x2…xn…,n∈N+,则数列{f(xn)}的前n项和为(  )
A.2n+1-2B.2n-1C.n2D.n2-1

分析 作出函数f(x)=$\left\{\begin{array}{l}{1-|x-1|,x<2}\\{2f(x-2),x≥2}\end{array}\right.$的图象,可得数列{f(x)}从小到大依次为1,2,4,…,组成以1为首项,2为公比的等比数列,即可求出数列{f(x)}的前n项和.

解答 解:函数f(x)=$\left\{\begin{array}{l}{1-|x-1|,x<2}\\{2f(x-2),x≥2}\end{array}\right.$的图象如图所示,
x=1时,f(x)=1,
x=3时,f(x)=2,
x=5时,f(x)=4,

所以方程f(x)=g(x)=2${\;}^{\frac{x-1}{2}}$的根从小到大依次为1,3,5,…,数列{f(xn)}从小到大依次为1,2,4,…,组成以1为首项,2为公比的等比数列,
所以数列{f(xn)}的前n项和为$\frac{1-{2}^{n}}{1-2}$=2n-1,
故选:B.

点评 本题考查方程根,考查数列的求和,考查学生分析解决问题的能力,正确作图,确定数列{f(x)}从小到大依次为1,2,4,…,组成以1为首项,2为公比的等比数列是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若集合A={x|(x-1)(x+2)>0},集合B={-3,-2,-1,0,1,2},则A∩B等于(  )
A.{0,1}B.{-3,-2}C.{-3,2}D.{-3,-2,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\frac{lnx}{x}$,则函数f(x)(  )
A.在x=e处取得极小值B.在x=e处取得极大值
C.在x=$\frac{1}{e}$处取得极小值D.在x=$\frac{1}{e}$处取得极大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列函数的导数:
(1)y=x1.8
(2)y=x${\;}^{-\frac{1}{3}}$;
(3)y=$\frac{\root{4}{x}}{\root{3}{x}}$;
(4)y=$\frac{1}{\sqrt{x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:对于任意非零实数x,不等式m<$\frac{{x}^{4}-x^2+1}{{x}^{2}}$恒成立;命题q:函数f(x)=x2-2mx在区间(2,+∞)上是增函数,若命题p和命题q有且只有一个真命题,则实数m的取值范围是(  )
A.(1,2)B.[1,2]C.(-∞,1]D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知0<A<$\frac{π}{2}$,且cos 2A=$\frac{3}{5}$,那么cos A等于(  )
A.$\frac{4}{25}$B.$\frac{4}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分,回答如下:甲说:是我考满分;乙说:丙不是满分;丙说:乙说的是真话.事实证明:在这三名同学中,只有一人说的是假话,那么满分的同学是(  )
A.B.C.D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某城市的交通道路如图,从城市的东南角A到城市的西北角B,不经过十字道路维修处C,最近的走法种数有(  )
A.33B.60C.66D.126

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点P是椭圆$\frac{{x}^{2}}{3}$+y2=1上的动点,M,N是直线l:y=x上的两个动点,则满足|MN|=t,则
①存在实数t使得△MNP为正三角的点P仅有一个
②存在实数t使得△MNP为正三角的点P仅有两个
③存在实数t使得△MNP为正三角的点P仅有三个
④存在实数t使得△MNP为正三角的点P仅有四个
⑤存在实数t使得△MNP为正三角的点P有无数个
上述命题中正确命题有(  )
A.②④B.①③C.②③④D.①②③④⑤

查看答案和解析>>

同步练习册答案