精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ex-ax2,e=2.71828…,曲线y=f(x)在点(1,f(1))处的切线方程为y=(e-2)x+b.
(1)求a,b的值;
(2)设x≥0,求证:f(x)>x2+4x-14.

分析 (1)求导数,得切线方程,利用曲线y=f(x)在点(1,f(1))处的切线方程为y=(e-2)x+b,即可求a,b的值;
(2)由(1)可得f(x)=ex-x2,证明f(x)>x2+4x-14,只要证明ex-2x2-4x+14>0,构造函数,确定函数的单调性,即可证明结论.

解答 解:(1)函数的导数f′(x)=ex-2ax,f′(1)=e-2a,f(1)=e-a,
∴y=f(x)在点(1,f(1))处的切线方程为y-(e-a)=(e-2a)(x-1),
由曲线y=f(x)在点(1,f(1))处的切线方程为y=(e-2)x+b
曲线y=f(x)在点(1,f(1))处的切线方程为y=(e-2)x+b,
得$\left\{\begin{array}{l}{e-2a=e-2}\\{e-2+b=e-a}\end{array}\right.$,
∴a=b=1;
(2)证明:由(1)可得f(x)=ex-x2,要证f(x)>x2+4x-14,
只要证明ex-2x2-4x+14>0.
设g(x)=ex-2x2-4x+14,g′(x)=ex-4x-4,
设h(x)=ex-4x-4,则h′(x)=ex-4,
∴h(x)在(0,2ln2)上单调递减,(2ln2,+∞)上单调递增,
设曲线y=h(x)与x轴的交点为(m,0)
∵h(0)=-3<0,h(2)=e2-12<0,h(3)=e3-16>0,
∴2<m<3,em=4m+4,
∵x∈(0,m),g′(x)<0,x∈(m,+∞),g′(x)>0,
∴g(x)≥g(m)=18-2m2
∵2<m<3,∴g(x)≥2(9-m2)>0,即f(x)>x2+4x-14.

点评 本题考查导数知识的综合运用,考查导数的几何意义,考查构造法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.正项等比数列{an}的前n项和为Sn,若${a_1}=1,\;{S_3}=\frac{7}{4}$,则a6=$\frac{1}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=lnx,g(x)=ax+$\frac{a-1}{x}$-3(a∈R).
(1)当a=2时,解关于x的方程g(ex)=0(其中e为自然对数的底数);
(2)求函数φ(x)=f(x)+g(x)的单调增区间;
(3)当a=1时,记h(x)=f(x)•g(x),是否存在整数λ,使得关于x的不等式2λ≥h(x)有解?若存在,请求出λ的最小值;若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图所示,已知G,G1分别是棱长为4的正方体ABCD-A1B1C1D1的下底面和上地面的中心,点P在线段GG1上运动,点Q在下底面ABCD内运动,且始终保持PQ=2,则线段PQ的中点M运动形成的曲面与正方体下底面所围成的几何体的体积为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+4x-1.
(1)当a=1时,对任意x1,x2∈R,且x1≠x2,试比较f($\frac{{x}_{1}+{x}_{2}}{2}$)与$\frac{f({x}_{1})+f({x}_{2})}{2}$的大小;
(2)对于给定的正实数a,有一个最小的负数g(a),使得x∈[g(a),0]时,-3≤f(x)≤3都成立,则当a为何值时,g(a)最小,并求出g(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2x+3,-x)(x∈R),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为(  )
A.-2B.-2或0C.1或-3D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.将某选手的9个得分去掉一个最高分,去掉一个最低分,7个剩余分数的平均分为91,现场作的9个得分的茎叶图,后来有一个数据模糊,无法辨认,在图中以x表示,则x为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合M={x|x2-x-2<0},N={x|x≤k},若M∩N=M,则k的取值范围是(  )
A.(-∞,2]B.[-1,+∞)C.(-1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的短轴长为2$\sqrt{3}$,离心率为$\frac{1}{2}$,点F为其在y轴正半轴上的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若一动圆过点F,且与直线y=-1相切,求动圆圆心轨迹C1的方程;
(Ⅲ)过F作互相垂直的两条直线l1,l2,其中l1交曲线C1于M、N两点,l2交椭圆C于P、Q两点,求四边形PMQN面积的最小值.

查看答案和解析>>

同步练习册答案