精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
,x∈R)
的图象的一部分如图所示.
(I)求函数f(x)的解析式;
(II)求函数y=f(x)+f(x+2)的最大值与最小值.
分析:(I)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,从而得到函数的解析式.
(II)利用两角和差的正弦公式化简函数y=f(x)+f(x+2)的解析式为 2
2
cos
π
4
x
,由此求得函数的最大值与最小值.
解答:(I)由图象,知A=2,
ω
=8
.∴ω=
π
4
,可得f(x)=2sin(
π
4
x+φ)
. …(2分)
当x=1时,有
π
4
×1+φ=
π
2
,∴φ=
π
4
.   …(4分)
f(x)=2sin(
π
4
x+
π
4
)
.         …(5分)
(II)y=2sin(
π
4
x+
π
4
)+2sin[
π
4
(x+2)+
π
4
]
=2sin(
π
4
x+
π
4
)+2cos(
π
4
x+
π
4
)
 …(7分)
=2
2
sin(
π
4
x+
π
2
)
=2
2
cos
π
4
x
. …(10分)
ymax=2
2
ymin=-2
2
.      …(12分)
点评:本题主要考查利用y=Asin(ωx+∅)的图象特征,由函数y=Asin(ωx+∅)的部分图象求解析式,两角和差的正弦公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案