精英家教网 > 高中数学 > 题目详情
8.在对数式b=log(a-2)(5-a)中,实数a的取值范围是(  )
A.(3,4)B.(2,5)C.(2,3)∪(3,5)D.(-∞,2)∪(5,+∞)

分析 对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可.

解答 解:要使对数式b=log(a-2)(5-a)有意义,
则$\left\{\begin{array}{l}{a-2>0}\\{5-a>0}\\{a-2≠1}\end{array}\right.$,解得a∈(2,3)∪(3,5),
故选:C.

点评 本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知全集U=R,A={x|x≥1},B={x|2ax-5>0},
(1)若a=1,求A∩(∁UB).
(2)若A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知各项不为0的等差数列{an}满足a4-2a72+3a8=0,数列{bn}是等比数列,且b7=a7,则b2b8b11等于8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于实数m,m>0,存在函数f(x)=ax2(a>0)图象上两点A、B,点A、B横坐标分别为1、m,使得$\overrightarrow{OA}$=λ(|$\overrightarrow{OB}$|$\overrightarrow{OC}$+|$\overrightarrow{OC}$|$\overrightarrow{OB}$)(λ为常数),其中点C(c,0)(c>0),则实数m的取值范围为(  )
A.(1,+∞)B.($\sqrt{2}$,+∞)C.(2,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)是定义在R上的偶函数,当0≤x≤2时,y=x,当x>2时,y=f(x)的图象是顶点为P(3,4),且过点A(2,2)的抛物线的一部分.
(1)求函数f(x)在(2,+∞)上的解析式;
(2)在直角坐标系中直接画出函数f(x)的图象;
(3)写出函数f(x)的值域及单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x+x-1=3,那么x2-x-2的值为(  )
A.$±3\sqrt{5}$B.$-\sqrt{5}$C.$3\sqrt{5}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={x|x≤$\frac{1}{2}$},m=sin40?,则下列关系中正确的是(  )
A.m?AB.m∉AC.{m}∈AD.{m}⊆A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知条件p:x≥y≥0,条件q:$\sqrt{x}≥\sqrt{y}$,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.用下列方法给定数列{an},a0=$\frac{1}{2}$,ak=ak-1+$\frac{1}{n}$a2k-1(k=1,2,3…),证明:1-$\frac{1}{n}$<an<1.

查看答案和解析>>

同步练习册答案