【题目】在直角坐标系
中,直线
的参数方程为
(
为参数).以坐标原点
为极点,
轴的非负半轴建立极坐标系,点
的极坐标
,曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)若
为曲线
上的动点,求
中点
到直线
的距离最小值.
科目:高中数学 来源: 题型:
【题目】某创业者计划在某旅游景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向此创业者对该景区附近五家“农家乐”跟踪调查了100天,这五家“农家乐的收费标准互不相同得到的统计数据如下表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图
x | 100 | 150 | 200 | 300 | 450 |
t | 90 | 65 | 45 | 30 | 20 |
![]()
(1)若从以上五家“农家乐”中随机抽取两家深人调查,记
为“入住率超过0.6的农家乐的个数,求
的概率分布列
(2)z=lnx,由散点图判断
与
哪个更合适于此模型(给出判断即可不必说明理由)?并根据你的判断结果求回归方程(a,
的结果精确到0.1)
(3)根据第(2)问所求的回归方程,试估计收费标准为多少时,100天销售额L最大?(100天销售额L=100×入住率×收费标准x)
参考数据
,
,
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
,若
,则对此不等式描叙正
确的是( )
A. 若
,则至少存在一个以
为边长的等边三角形
B. 若
,则对任意满足不等式的
都存在以
为边长的三角形
C. 若
,则对任意满足不等式的
都存在以
为边长的三角形
D. 若
,则对满足不等式的
不存在以
为边长的直角三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究机构为了解某学校学生使用手机的情况,在该校随机抽取了60名学生(其中男、女生人数之比为2:1)进行问卷调查.进行统计后将这60名学生按男、女分为两组,再将每组学生每天使用手机的时间(单位:分钟)分为
5组,得到如图所示的频率分布直方图(所抽取的学生每天使用手机的时间均不超过50分钟).
![]()
(1)求出女生组频率分布直方图中
的值;
(2)求抽取的60名学生中每天使用手机时间不少于30分钟的学生人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)="xln" x–ax2+(2a–1)x,a
R.
(Ⅰ)令g(x)=f'(x),求g(x)的单调区间;
(Ⅱ)已知f(x)在x=1处取得极大值.求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为一正方体的平面展开图,在这个正方体中,有以下结论:①
,②CF与EN所成的角为
,③
//MN ,④二面角
的大小为
,其中正确的个数是( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新高考改革后,国家只统一考试数学和语文,英语学科改为参加等级考试,每年考两次,分别放在每个学年的上、下学期,物理、化学、生物、地理、历史、政治这六科则以该省的省会考成绩为准.考生从中选择三科成绩,参加大学相关院系的录取.
(1)若英语等级考试成绩有一次为优,即可达到某211院校的录取要求.假设某个学生参加每次等级考试事件是独立的,且该生英语等级考试成绩为优的概率都是
,求该生在高二上学期的英语等级考试成绩才为优的概率;
(2)据预测,要想报考该211院校的相关院系,省会考的成绩至少在90分以上,才有可能被该校录取.假设该生在省会考六科的成绩,考到90分以上概率都是
,设该生在省会考时考到90分以上的科目数为
,求
的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com