精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知定点A(-4,0),B(0,-2),半径为r的圆M的圆心M在线段AB的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为
3
r

(1)若r为正常数,求圆M的方程;
(2)当r变化时,是否存在定直线l与圆相切?如果存在求出定直线l的方程;如果不存在,请说明理由.
分析:(1)设圆心M(a,b),利用圆心在直线AB的垂直平分线上,从而|MA|=|MB|,再结合圆心在y轴右侧(即a>0),圆M被y轴截得的弦长为
3
r,列方程组解之即可;
(2)依题意,可设直线l:y=kx+b与圆M相切,利用圆心到直线l的距离等于半径求得m,判断即可.
解答:解:(1)设圆心M(a,b),由题意可知
(
3
2
r)2+a2=r2
a>0
(a+4)2+b2=a2+(b+2)2
,解得
a=
1
2
r
b=r+3

所以圆M的方程为(x-
1
2
r)
2
+(y-r-3)2=r2
(2)
设直线l:y=kx+b,
|k×
r
2
-r-3+b|
1+k2
=r对任意r>0恒成立,
由|(
k
2
-1)r+b-3|=r
1+k2
得:
(
k
2
-1)
2
+(k-2)(b-3)r+(b-3)2=(1+k2)r2
(
k
2
-1)
2
=1+k2
(k-2)(b-3)=0
(b-3)2=0

解得
k=0
b=3
k=-
4
3
b=3

∴存在两条直线y=3和4x+3y-9=0与动圆M均相切.
点评:本题考查直线与圆的位置关系,考查理解题意与解方程组的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案