精英家教网 > 高中数学 > 题目详情
11.函数f(x)=$\frac{1}{x}$-2x在区间[-2,-$\frac{1}{2}$]上的最小值为-1.

分析 利用导数,确定f(x)在[-2,-$\frac{1}{2}$]上为减函数,即可求出函数f(x)=$\frac{1}{x}$-2x在区间[-2,-$\frac{1}{2}$]上的最小值.

解答 解:∵f(x)=$\frac{1}{x}$-2x,
∴f′(x)=-$\frac{1}{{x}^{2}}$-2<0,
∴f(x)在[-2,-$\frac{1}{2}$]上为减函数,
∴当x=-$\frac{1}{2}$时,f(x)=$\frac{1}{x}$-2x在区间[-2,-$\frac{1}{2}$]上的最小值为 f(-$\frac{1}{2}$)=-1.
故答案为:-1.

点评 本题主要考查函数的导数与最值的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.a,b是互不相等的正数,则|a-b|+$\frac{1}{a-b}$≥2,这个命题正确吗,并解释.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆$\left\{\begin{array}{l}{x=3+3\sqrt{3}cosφ}\\{y=3\sqrt{3}sinφ}\end{array}\right.$(φ为参数)被圆$\left\{\begin{array}{l}{x=3cosθ}\\{y=3sinθ}\end{array}\right.$所截得的劣弧的长为(  )
A.B.$\sqrt{3}$πC.3$\sqrt{3}$πD.$\sqrt{6}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.指出下列各对集合之间的关系,并判定它们的特点
E={x|x是两组对边分别平行的四边形},F={x|x是一组对边平行且相等的四边形}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A={x|x满足条件p},B={x|x满足条件q}.
(1)如果A⊆B,那么p是q的什么条件;
(2)如果B⊆A,那么p是q的什么条件;
(3)如果A=B,那么p是q的什么条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A={奇数},B={偶数},x=4k+1,y=4k+2,z=4k+3(k∈Z),则x,x+y,x-y,x+z,x-z,y+z,y-z中,属于集合A的元素是x,x+y,x-y,y+z,y-z;属于集合B的元素是x+z,x-z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=-x2+6x+8,g(x)=f(6+2x-x2),求:函数g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$的终点与向量$\overrightarrow{b}$的起点重合,向量$\overrightarrow{c}$的起点与向量$\overrightarrow{b}$的终点重合,则下列结论中,正确的个数为(  )
①以$\overrightarrow{a}$的起点为终点,以$\overrightarrow{c}$的起点为起点的向量为-($\overrightarrow{a}+\overrightarrow{b}$)
②以$\overrightarrow{a}$的起点为终点,以$\overrightarrow{c}$的终点为起点的向量为-$\overrightarrow{a}-\overrightarrow{b}-\overrightarrow{c}$
③以$\overrightarrow{b}$的起点为终点,以$\overrightarrow{c}$的终点为起点的向量为-$\overrightarrow{b}-\overrightarrow{c}$.
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a1=1,a2=2,an=an-2+an-1,则a6=(  )
A.13B.14C.15D.16

查看答案和解析>>

同步练习册答案