2£®ÒÑÖªÔ²$\left\{\begin{array}{l}{x=3+3\sqrt{3}cos¦Õ}\\{y=3\sqrt{3}sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©±»Ô²$\left\{\begin{array}{l}{x=3cos¦È}\\{y=3sin¦È}\end{array}\right.$Ëù½ØµÃµÄÁÓ»¡µÄ³¤Îª£¨¡¡¡¡£©
A£®3¦ÐB£®$\sqrt{3}$¦ÐC£®3$\sqrt{3}$¦ÐD£®$\sqrt{6}$¦Ð

·ÖÎö Ê×ÏÈ£¬»¯¼òº¯Êý½âÎöʽ£¬È»ºó£¬½áºÏͼÐΣ¬È·¶¨¸Ã»¡Ëù¶ÔµÄÔ²ÐĽǼ´¿É£®

½â´ð ½â£º¸ù¾ÝÔ²$\left\{\begin{array}{l}{x=3+3\sqrt{3}cos¦Õ}\\{y=3\sqrt{3}sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©
µÃ£¨x-3£©2+y2=27£¬Ô²ÐÄΪ£¨3£¬0£©£¬°ë¾¶Îª3$\sqrt{3}$£¬
¡ßÔ²$\left\{\begin{array}{l}{x=3cos¦È}\\{y=3sin¦È}\end{array}\right.$£¬
¡àx2+y2=9£¬Ô²ÐÄΪ£¨0£¬0£©£¬°ë¾¶Îª3£¬
ÈçͼËùʾ£º¹ýµãA×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪµãC£¬ÔòÔÚ¡÷ABOÖУ¬¸ÃÈý½ÇÐÎΪµÈ±ßÈý½ÇÐΣ¬
µÃµ½AC=$\frac{3\sqrt{3}}{2}$£¬ÔÚÖ±½ÇÈý½ÇÐÎACMÖУ¬¡ÏAMC=30¡ã£¬
¡à$\widehat{ABD}$=$\frac{¦Ð}{3}¡Á3\sqrt{3}$=$\sqrt{3}¦Ð$£¬
¹ÊÑ¡B£®

µãÆÀ ±¾ÌâÖØµã¿¼²éÁËÔ²µÄ²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯¡¢»¡³¤¹«Ê½µÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®¼Ça£¬bµÄ´úÊýʽΪf£¨a£¬b£©£¬ËüÂú×ã¹ØÏµ£º¢Ùf£¨a£¬a£©=a£»¢Úf£¨ka£¬kb£©=kf¡ä£¨a£¬b£©£»¢Ûf£¨a£¬b£©=f£¨b£¬$\frac{a+b}{2}$£©£»¢Üf£¨a1+a2£¬b1+b2£©=f£¨a1£¬b1£©+f£¨a2£¬b2£©£¬Ôòf£¨a£¬b£©=£¨¡¡¡¡£©
A£®$\frac{1}{3}$a+$\frac{2}{3}$bB£®$\frac{2}{3}$a+$\frac{1}{3}$bC£®$\frac{1}{3}a$-$\frac{2}{3}$bD£®$\frac{2}{3}$a-$\frac{1}{3}$b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=x2+ax+b£¨a¡ÊR£¬b¡ÊR£©£¬A={x|x=f£¨x£©£¬x¡ÊR}£¬B={x|x=f[f£¨x£©]£¬x¡ÊR}£¬ÈôA={-1£¬3}ʱ£¬ÓÃÁоٷ¨±íʾ¼¯ºÏB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-{x}^{2}+2x-1£¬x¡Ý1}\\{{x}^{2}-1£¬x£¼1}\end{array}\right.$£¬Ôòf[f£¨x£©]£¼3µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨-2£¬+¡Þ£©B£®£¨-2£¬$\sqrt{2}+1$£©C£®£¨-¡Þ£¬$\sqrt{2}+1$£©D£®£¨-$\sqrt{2}+1$£¬$\sqrt{2}+1$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èô¼¯ºÏA={x|x£¾2}£¬B={x|x£¾a}£¬ÇÒB⊆A£¬ÔòaµÄȡֵ·¶Î§ÊÇ[2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\frac{3x-2}{x+1}$£¬x¡Ê[0£¬2]ÉϵÄ×î´óֵΪ$\frac{4}{3}$£¬×îСֵΪ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªsin£¨$\frac{¦Ð}{12}$-¦Á£©=$\frac{1}{3}$£¬ÇÒ-¦Ð£¼¦Á£¼-$\frac{¦Ð}{2}$£¬Ôòcos£¨$\frac{¦Ð}{12}$-¦Á£©=-$\frac{2\sqrt{2}}{3}$£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®º¯Êýf£¨x£©=$\frac{1}{x}$-2xÔÚÇø¼ä[-2£¬-$\frac{1}{2}$]ÉϵÄ×îСֵΪ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÈôÔ²µÄ·½³ÌΪx2+y2+kx+2y+k2=0£¬Çҵ㣨1£¬2£©ÔÚÔ²Í⣬ÔòkµÄȡֵ·¶Î§Îª-$\frac{2\sqrt{3}}{3}$£¼k£¼$\frac{2\sqrt{3}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸