精英家教网 > 高中数学 > 题目详情
17.如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=75°,∠BDC=60°,CD=40m,并在点C测得塔顶A的仰角为30°.则塔高AB为(  )m.
A.20B.20$\sqrt{2}$C.20$\sqrt{3}$D.40

分析 在△BCD中使用正弦定理求出BC,在利用锐角三角函数的定义得出AB.

解答 解:∵∠BCD=75°,∠BDC=60°,∴∠CBD=45°,
在△BCD中,由正弦定理得:$\frac{BC}{sin∠BDC}=\frac{CD}{sin∠CBD}$,即$\frac{BC}{sin60°}=\frac{40}{sin45°}$,
解得BC=20$\sqrt{6}$,
又tan∠ACB=$\frac{AB}{BC}$=$\frac{\sqrt{3}}{3}$,∴AB=$\frac{\sqrt{3}}{3}$BC=20$\sqrt{2}$.
故选:B.

点评 本题考查了正弦定理,解三角形的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=xlnx-ax2+$\frac{1}{2}$.
(I) 当a=$\frac{1}{2}$时,判断f(x)在其定义上的单调性;
(Ⅱ)若函数f(x)有两个极值点x1,x2,其中x1<x2.求证:
(i)f(x2)>0;
(ii)x1+x2>$\frac{1}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,程序输出的结果s=11880,则判断框中应填(  )
A.i≥11?B.i≥10?C.i≤9?D.i≥9?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出下列说法:
①终边相同的角同一三角函数值相等;
②在三角形中,若sinA=sinB,则有A=B;
③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;
④若sinα=sinβ,则α与β的终边相同;
⑤若cos θ<0,则θ是第二或第三象限的角.
其中正确说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法错误的是(  )
A.在△ABC中,a>b是sinA>sinB的充要条件
B.命题:“在锐角△ABC中,sinA>cosB”为真命题
C.若p:?x≥0,x2-x+1>0,则¬p:?x<0,x2-x+1≤0
D.已知命题p:?φ∈R,使f(x)=sin(x+φ)为偶函数;命题q:?x∈R,cos2x+4sinx-3<0,则“p∧(¬q)”为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出下列命题:
①命题:“?x∈R,x2+x+1>0”的否定是“?x0∈R,x${\;}_{0}^{2}$+x0+1<0”;
②设回归直线方程$\widehat{y}$=2-3x,当变量x增加一个单位时,$\widehat{y}$平均增加3个单位;
③已知sin(θ-$\frac{π}{6}$)=$\frac{1}{3}$,则cos($\frac{π}{3}$-2θ)=$\frac{7}{9}$;
④cosα=cosβ成立的一个充分不必要条件是α=2kπ+β(k∈Z).
其中正确命题的个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若椭圆的对称轴为坐标轴,且长轴长为10,有一个焦点坐标是(3,0),则此椭圆的标准方程为$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设F1、F2分别是双曲线C:$\frac{x^2}{4}$-$\frac{y^2}{5}$=1的左右焦点,点P在双曲线C的右支上,且$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=0,则|$\overrightarrow{P{F_1}}$+$\overrightarrow{P{F_2}|}$=(  )
A.4B.6C.$2\sqrt{14}$D.$4\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数z1=i,z2=1+i,那么复数z1•z2在复平面上的对应点所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案