精英家教网 > 高中数学 > 题目详情
18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)过点($\sqrt{2}$,1),且焦距为2$\sqrt{2}$.
(1)求椭圆C的方程;
(2)若直线l:y=k(x+1)(k>-2)与椭圆C相交于不同的两点A、B,线段AB的中点M到直线2x+y+t=0的距离为$\frac{3\sqrt{5}}{5}$,求t(t>2)的取值范围.

分析 (1)由c=$\sqrt{2}$,则a2-b2=2,将点代入椭圆方程,联立即可求得a和b的值,即可求得椭圆方程;
(2)将直线方程代入椭圆方程,利用韦达定理及中点坐标公式求得M点坐标,利用点到直线的距离公式,根据k及t的取值范围,利用基本不等式的性质,即可求得t的取值范围.

解答 解:(1)由2c=2$\sqrt{2}$,c=$\sqrt{2}$,则a2-b2=2,
将点($\sqrt{2}$,1)代入椭圆方程:$\frac{2}{{a}^{2}}+\frac{1}{{b}^{2}}=1$,解得:a2=4,b2=2,
∴椭圆的标准方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$;
(2)A(x1,y1),B(x2,y2),M(x0,y0
$\left\{\begin{array}{l}{y=k(x+1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,整理得:(2k2+1)x2+4k2x+2k2-4=0,
则x1+x2=-$\frac{4{k}^{2}}{2{k}^{2}+1}$,则x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{2{k}^{2}}{2{k}^{2}+1}$,
y0=k(x0+1)=$\frac{2k}{2{k}^{2}+1}$,
由M到直线2x+y+t=0的距离$\frac{3\sqrt{5}}{5}$,$\frac{丨-\frac{4{k}^{2}}{2{k}^{2}+1}+\frac{k}{2{k}^{2}+1}+t丨}{\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$,
则丨$\frac{k+2}{2{k}^{2}+1}$+t-2丨=3,
由k>-2及t>2,则t=5-$\frac{k+2}{2{k}^{2}+1}$=5-$\frac{1}{2(k+2)+\frac{9}{k+2}-8}$,
由$\frac{1}{2(k+2)+\frac{9}{k+2}-8}$≥6$\sqrt{2}$,
∴5-$\frac{1}{6\sqrt{2}-8}$≤t<5,即4-$\frac{3\sqrt{2}}{4}$≤t<5,
∴t(t>2)的取值范围[4-$\frac{3\sqrt{2}}{4}$,5).

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,中点坐标公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知x,y∈[0,2],则事件“x+y≤1”发生的概率为(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{15}{16}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sinωx+$\sqrt{3}$cosωx(x∈R),又f(α)=2,f(β)=2,且|α-β|的最小值是$\frac{π}{2}$,则正数ω的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A(3,5,2),B(-1,2,1),把$\overrightarrow{AB}$按向量$\overrightarrow{a}$=(2,1,1)平移后所得的向量是(  )
A.(-4,-3,-1)B.(-4,-3,0)C.(-2,-1,0)D.(-2,-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知正六棱锥S-ABCDEF的底面边长和高均为1,则异面直线SC与DE所成角的大小为450..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某市地产数据研究的数据显示,2016年该市新建住宅销售均价走势如下图所示,3月至7月房价上涨过快,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.

(Ⅰ)地产数据研究所发现,3月至7月的各月均价y(万元/平方米)与月份x之间具有较强的线性相关关系,试求y关于x的回归方程;
(Ⅱ)政府若不调控,依此相关关系预测第12月份该市新建住宅的销售均价.
(从3月到7月的参考数据:$\sum_{i=1}^{5}$xi=25,$\sum_{i=1}^{5}$yi=5.36,$\sum_{i=1}^{5}$(xi-$\overline{x}$)(yi-$\overline{y}$)=0.64;回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的离心率为$e=\frac{1}{2}$,左右焦点分别为F1,F2,以椭圆短轴为直径的圆与直线$x-y+\sqrt{6}=0$相切.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过点F1、斜率为k1的直线l1与椭圆E交于A,B两点,过点F2、斜率为k2的直线l2与椭圆E交于C,D两点,且直线l1,l2相交于点P,若直线OA,OB,OC,OD的斜率kOA,kOB,kOC,kOD满足kOA+kOB=kOC+kOD,求证:动点P在定椭圆上,并求出此椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知在平面直角坐标系中,$\overrightarrow{a}$=(-6,8),$\overrightarrow{a}$•$\overrightarrow{b}$=-24,则向量$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影是$-\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某公司为对本公司的160名员工的身体状况进行调查,先将员工随机编号为1,2,3,…,159,160,采用系统抽样的方法(等间距地抽取,每段抽取一个个体)将抽取的一个样本.已知抽取的员工中最小的两个编号为5,21,那么抽取的员工中,最大的编号应该是(  )
A.141B.142C.149D.150

查看答案和解析>>

同步练习册答案