精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex-x (e为自然对数的底数).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|
1
2
≤x≤2}且M∩P≠∅,求实数a的取值范围;(3)已知n∈N﹡,且Sn=∫tn[f(x)+x]dx(t为常数,t≥0),是否存在等比数列{bn},使得b1+b2+…bn=Sn;若存在,请求出数列{bn}的通项公式;若不存在,请说明理由.
(1)f′(x)=ex-1                                              
由f′(x)=0得x=0
当x>0时f′(x)>0.当x<0时,f′(x)<0
∴f(x)在(0,+∞)上增,在(-∞,0)上减
∴f(x)min=f(0)=1                 
(2)∵M∩P≠∅,∴f(x)>ax在区间[
1
2
,2]
有解
由f(x)>ax得ex-x>ax
a<
ex
x
-1在[
1
2
,2]
上有解                  
令  g(x)=
ex
x
-1,  x∈[
1
2
,2]

g′(x)=
(x-1)ex
x2

g(x)在[
1
2
,1]
上减,在[1,2]上增
g(
1
2
)=2
e
-1,g(2)=
e2
2
-1
,且g(2)>g(
1
2
)

g(x)max=g(2)=
e2
2
-1

a<
e2
2
-1
                                                            
(3)设存在等比数列{bn},b1+b2+…+bn=Sn
∵Sn=∫tn[f(x)+x]dx=en-et
∴b1=e-et                     
n≥2时bn=Sn-Sn-1=(e-1)en-1
当t=0时bn=(e-1)en-1,数{bn}为等比数列
t≠0时
b2
b1
b3
b2
,则数{bn}不是等比数列
∴当t=0时,存在满足条件的数bn=(e-1)en-1满足题意
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(cosx+sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn}.求证:数列{f(xn)}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知函数f(x)=e|lnx|-|x-
1
x
|,则函数y=f(x+1)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(x2+x+1).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案