精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a
x
+lnx-n(a>0)
,其中n=
π
2
0
(2sin
t
2
cos
t
2
)dt.
若函数f(x)在定义域内有零点,则a的取值范围是
(0,1]
(0,1]
分析:先利用微积分基本定理求出n,得到函数的解析式,再求导函数,从而可确定函数的最小值,要使函数f(x)在定义域内有零点,则需最小值小于等于0即可.
解答:解:n=
π
2
0
(2sin
t
2
cos
t
2
)dt.

∴n=∫0 
π
2
sintdt=-cost|0 
π
2
=1,
从而f(x)=
a
x
+lnx-1(a>0)

函数的定义域为(0,+∞)
f′(x)=-
a
x2
+
1
x
=
x-a
x2

令f′(x)=0,∴x=a
当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0,
∴x=a时,函数f(x)取得最小值lna
∵函数f(x)在定义域内有零点
∴lna≤0
∴0<a≤1
∴函数f(x)在定义域内有零点时,a的取值范围是(0,1]
故答案为:(0,1].
点评:本题以函数为载体,考查微积分基本定理,导数的运用,考查函数的零点,解题的关键是将函数f(x)在定义域内有零点,转化为最小值小于等于0.本题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案