精英家教网 > 高中数学 > 题目详情
13.已知集合A={x|log2x<1},B={y|y=2x,x∈A},则A∩B=(  )
A.(0,2)B.(1,2)C.[0,4)D.(1,4)

分析 求出A中x的范围确定出A,求出B中y的范围确定出B,找出两集合的交集即可.

解答 解:由A中log2x<1=log22,得到0<x<2,即A=(0,2),
由B中y=2x,x∈A,得到1<y<4,即B=(1,4),
则A∩B=(1,2),
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.$\underset{lim}{n→x}$($\frac{2+3}{6}$+$\frac{{2}^{2}+{3}^{2}}{{6}^{2}}$+$\frac{{2}^{3}+{3}^{3}}{{6}^{3}}$+…+$\frac{{2}^{n}+{3}^{n}}{{6}^{n}}$)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.小李以10元一股的价格购买了一支股票,他将股票当天的最高价格y(元)与第t个交易日,其中0≤t≤24进行了记录,得到有关数据如下:
t03691215182124
y/元10.013.09.97.010.013.010.017.010.0
他经过研究后认为单支股票当天的最高价格y(元)是第t个交易日的函数y=f(t),并且认为y=f(t)的曲线可近似地看作函数f(t)=Asinωt+h的图象,请根据他的观点解决问题:试根据以上数据,求出函数f(t)=Asinωt+h的振幅、最小正周期和表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C被直线x+y+3=0所截得的弦长为4,则圆C的方程为(x+1)2+y2=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若f(x)=x2+2(a-1)x+2在区间(4,+∞)上是增函数,那么实数a的取值范围是(  )
A.a≥3B.a≥-3C.a≤-3D.a≤5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知α∈(0,2π),则满足不等式$sin2α>{∫}_{0}^{α}cosxdx$的α的取值范围是(  )
A..$(\frac{π}{3},\frac{5π}{3})$B.(0,$\frac{π}{3}$)∪($\frac{5π}{3}$,2π)C.(0,$\frac{π}{3}$)∪(π,$\frac{5π}{3}$)D.($\frac{π}{3}$,π)∪($\frac{5π}{3}$,2π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}各项均为正数,其前n项和为Sn,且a1=1,anan+1=2Sn.(n∈N*
(1)求数列{an}的通项公式;
(2)求数列{$n•{2}^{{a}_{n}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.证明:$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n}$<1n2.(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a1=1,an=3n-1+an-1(n∈N*,n≥2).
(1)求数列{an}的通项公式;
(2)求数列{2n•an}的前n项和Sn

查看答案和解析>>

同步练习册答案