精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2-2(-1)klnx(k∈N*),f(x)表示f(x)导函数.
(I)求函数f(x)的单调递增区间;
(Ⅱ)当k为偶数时,数列{an}满足a1=1,anf(an)
=a2n+1
-3
.证明:数列{
a2n
}中不存在成等差数列的三项;
(Ⅲ)当k为奇数时,设bn=
1
2
f
(n)-n
,数列{bn}的前n项和为Sn,证明不等式(1+bn)
1
bn+1
e对一切正整数n均成立,并比较S2012-1与ln2012的大小.
(I)函数f(x)的定义域为(0,+∞),又f′(x)=2x-2(-1)k
1
x
=
2[x2-(-1)k]
x

1°当k 为奇数时,f′(x)=
2(x2+1)
x
,∵x∈(0,+∞),∴f′(x)>0恒成立;
2°当k 为偶数时,f′(x)=
2(x2-1)
x
,∵x+1>0,∴f′(x)>0得x>1,即f(x)的单调增区间为(1,+∞),
综上所述,当k 为奇数时,f(x)的单调增区间为(0,+∞),当k 为偶数时,即f(x)的单调增区间为(1,+∞),
(Ⅱ)当k 为偶数时,由(1)知f′(x)=2x-
2
x
,∴f′(an)=2an-
2
an

由条件得:2(an2-1)=a n+1 2-3,故有:an+1 2+1=2(an 2+1),
∴{an 2+1}是一个公比为2的等比数列,∴an2=2n-1,
假设数列{an2}中的存在三项ar 2,s 2,at 2,能构成等差数列
不妨设r<s<t,则2as 2=a r 2+at 2
即2(2s-1)=2r-1+2t-1,∴2 s-r+1=1+2 t-r
又s-r+1>0,t-r>0,∴2 s-r+1为偶数,1+2 t-r为奇数,故假设不成立,
因此,数列{an2}中的任意三项不能构成等差数列;
(Ⅲ) 当k为奇数时,f′(x)=2(x+
1
x
),
∴bn=
1
2
f′(n)-n=
1
n
,Sn=1+
1
2
+
1
3
+…+
1
n

要证(1+bn 
1
bn+1
>e,即证(1+
1
n
n+1>e,两边取对数,
即证ln(1+
1
n
)>
1
n+1
(10分)
设1+
1
n
=t,则n=
1
t-1

lnt>1-
1
t
(t>1),构造函数g(t)=lnt+
1
t
-1,
∵x>1,∴g′(t)=
1
t
-
1
t2
>0
∴g(t)在(1,+∞)上是增函数,g(t)>g(1)>0
即lnt>1-
1
t
,∴(1+bn 
1
bn+1
>e,
S2012-1=(1+
1
2
+
1
3
+…+
1
2012
)-1=
1
2
+
1
3
+…+
1
2012

∵ln(1+
1
n
)>
1
n+1
,∴
1
2
+
1
3
+…+
1
2012
<ln2+ln(1+
1
2
)+…+ln(1+
1
2012
)=ln2+ln
3
2
+…+ln
2012
2011

=ln(2×
3
2
×…×
2012
2011
)=ln2012,
1
2
+
1
3
+…+
1
2012
<ln2012,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案