精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,角A,B,C的对边分别为a,b,c.已知sin(A-B)=cosC.
(Ⅰ)求B;
(Ⅱ)若a=3
2
,b=
10
,求c.
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:(Ⅰ)已知等式右边利用诱导公式化简,根据三角形为锐角三角形,即可确定出B的度数;
(Ⅱ)由a,b,以及cosB的值,利用余弦定理求出c的值,检验即可得到满足题意c的值.
解答: 解:(Ⅰ)由sin(A-B)=cosC,得sin(A-B)=sin(
π
2
-C),
∵△ABC是锐角三角形,
∴A-B=
π
2
-C,即A-B+C=
π
2
,①
又A+B+C=π,②
由②-①,得B=
π
4

(Ⅱ)由余弦定理b2=c2+a2-2cacosB,得(
10
2=c2+(3
2
2-2c×3
2
cos
π
4

即c2-6c+8=0,
解得c=2,或c=4,
当c=2时,b2+c2-a2=(
10
2+22-(3
2
2=-4<0,
∴b2+c2<a2,此时A为钝角,与已知矛盾,
∴c≠2.
则c=4.
点评:此题考查了余弦定理,以及诱导公式,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设Sn为等差数列{an}的前n项和,S14=7a10,a7=2,则a9=(  )
A、-4B、4C、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asin(2ωx+
π
6
)+
a
6
+b
,(x∈R,a>0,ω>0)的最小正周期为π,函数f(x)的最大值是
7
4
,最小值是 
3
4

(1)求ω,a,b的值;
(2)求出f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx+bx(a,b∈R),g(x)=
1
2
x2-(m+
1
m
)x(m>0),且y=f(x)在点(1,f(1))处的切线方程为x-y-1=0.
(Ⅰ)求a,b的值;
(Ⅱ)若函数h(x)=f(x)+g(x)在区间(0,2)内有且仅有一个极值点,求m的取值范围;
(Ⅲ)设M(x,y)(x>m+
1
m
)为两曲线y=f(x)+c(c∈R),y=g(x)的交点,且两曲线在交点M处的切线分别为l1,l2.若取m=1,试判断当直线l1,l2与x轴围成等腰三角形时c值的个数并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简求值:
(1)
2cos10°-sin20°
cos20°

(2)已知cos(α-
β
2
)=-
1
9
,sin(
α
2
-β)=
2
3
,且
π
2
<α<π,0<β<
π
2
,求cos
α+β
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点P(0,
A
2
)是函数y=Asin(
9
x+φ)(其中A>0,φ∈[0,2π))的图象与y轴的交点,点Q是它与x轴的一个交点,点R是它的一个最低点.
(Ⅰ)求φ的值;
(Ⅱ)若PQ⊥PR,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥A-BCD中,BA=BD,AD⊥CD,E、F分别为AC、AD的中点.
(Ⅰ)求证:EF∥平面BCD;
(Ⅱ)求证:平面EFB⊥平面ABD;
(Ⅲ)若BC=BD=CD=AD=2,AC=2
2
,求二面角B-AD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-cos2x+
1
2

(1)求f(x)的最小正周期和最大值及相应x的值;
(2)当x∈(0,π),求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司生产产品A,产品质量按测试指标分为:指标大于或等于90为一等品,大于或等于80小于90为二等品,小于80为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利30元,生产一件三等品亏损10元.现随机抽查熟练工人甲和新工人乙生产的这种产品各100件进行检测,检测结果统计如下:
测试指标 [70,75] [75,80) [80,85) [85,90) [90,95) [95,100)
3 7 20 40 20 10
5 15 35 35 7 3
根据上表统计得到甲、乙两人生产产品A为一等品、二等品、三等品的频率分别估计为他们生产产品A为一等品、二等品、三等品的概率.
(1)计算甲生产一件产品A,给工厂带来盈利不小于30元的概率;
(2)若甲一天能生产20件产品A,乙一天能生产15件产品A,估计甲乙两人一天生产的35件产品A中三等品的件数.

查看答案和解析>>

同步练习册答案